説明

Fターム[4K030JA18]の内容

CVD (106,390) | 処理条件 (6,571) | 周波数 (280)

Fターム[4K030JA18]に分類される特許

21 - 40 / 280


【課題】耐食性に優れ、かつ接触抵抗が低くい金属基板を用いた固体高分子型燃料電池用セパレータの提供、及び生産性に優れたプラズマ処理技術及プラズマ処理装置を提供する。
【解決手段】金属製セパレータ基板表面に接触抵抗10mΩcm2以下、撥水角80°以上のシリコン含有炭素系被膜を被着する。プラズマ処理容器内に、一対の基板支持具2にそれぞれ複数枚の金属基板3をほぼ平行、且つ等間隔に係止した第1の基板電極群2aと第2の基板電極群2bとをほぼ等間隔に相互に噛み合わせて配置し、該一対の基板電極群にコンデンサー7を介して高周波電力を給電し、且つローパスフィルタ12を介して負の脈流電圧又はパルス電圧を印加する。 (もっと読む)


【課題】絶縁層上に結晶性の良好な半導体層を形成することができる、半導体装置の製造方法を提供する。
【解決手段】絶縁層41上に厚さ4nm〜1μmの非晶質の半導体層43を形成する工程と、この半導体層43に対して、波長が350nm〜500nmの範囲内のエネルギービームを照射することにより、半導体層43を結晶化させる工程とを含んで、半導体装置を製造する。 (もっと読む)


【課題】優れた基材とガスバリア層との密着性を有し、インラインでの処理が可能な高い生産能率のガスバリア性フィルムの製造方法を提供する。
【解決手段】基材100上に中間密着層101とガスバリア層102とを形成したガスバリア性フィルムの製造方法であって、基材が走行する金属ロール電極と、対向電極としてS・N極一対以上の磁石を設置した接地電極とを備え、両電極間の最短距離を特定範囲としたRIE処理装置を用い、前記電極間に、酸化用ガスを含む処理ガスと、気化した有機シリコン化合物を導入して、処理空間内の圧力を0.5〜20Paとして、30kHz以上4MHz以下の高周波を、特定値以上となるように印加し、基材表面に厚さ3nm以上の中間密着層を形成する工程と、中間密着層面上にガスバリア層を形成する工程とを具備する製造方法。 (もっと読む)


【課題】従来の方式では不十分であった、密着性、ガスバリア性を改善するため、ガスバリア性能と密着性を有した下地層、セラミック層、ガスバリア性能を有した保護層を減圧環境下におけるインライン成膜で形成することで、従来よりも密着性、ガスバリア性に優れたガスバリアフィルムを高い生産効率で提供すること。
【解決手段】プラスチックフィルム1の片面または両面に、下地層2を形成する工程と、前記下地層2の表面にセラミック層3を形成する工程と、前記セラミック層3の表面に保護層4を形成する工程とを具備し、全工程が減圧環境下におけるインライン成膜で各層を形成することを特徴とするガスバリアフィルムの製造方法。 (もっと読む)


【課題】処理室内のプラズマ分布を任意に制御することができ、処理室内のプラズマ密度を均一化して基板に対して均一なプラズマ処理を施すことができるプラズマ処理装置を提供する。
【解決手段】ウエハWに所定のプラズマ処理を施す真空排気可能なチャンバ11と、チャンバ11内で、ウエハWを載置するサセプタ12と、サセプタ12と処理空間Sを隔てて対向するように設けられた上部電極板30aと、サセプタ12及び上部電極30aの一方に高周波電力を印加して処理空間S内にプラズマを発生させる高周波電源20と、処理空間Sに対向する内壁構成部材と、を有し、処理空間Sの周辺部に対向する上部電極30aにホローカソード31a〜31cが設けられ、ホローカソード31a〜31cが設けられた上部電極30aはシース電圧調整用の直流電源37に接続されている。 (もっと読む)


【課題】十分なガスバリア性を示す高密度の非晶質窒化珪素膜を簡便な方法で提供すること。
【解決手段】高周波放電を利用したプラズマCVD法において、シランガスと、水素ガスと、アンモニアガスまたは窒素ガスの少なくとも一方とを含む混合ガスを用いて、電極間距離を50〜100mmとし、シランガスに対する水素ガスの流量比(H2/SiH4)を0.5〜3.0として非晶質窒化珪素膜を成膜する。 (もっと読む)


【課題】有機材料の表面にプラズマCVDによって無機膜を成膜する際に、目的とするガスバリア性を有するガスバリア膜を、安定して形成することを可能にする。
【解決手段】第1のプラズマ励起周波数で無機膜を成膜し、その後、前記第1のプラズマ励起周波数よりも低い周波数の第2のプラズマ励起周波数で無機膜を成膜することにより、前記課題を解決する。 (もっと読む)


【課題】生産コストを低くできるプラズマ処理装置及び基材の表面処理方法を提供する。
【解決手段】プラズマ処理装置は、チャンバー1と、チャンバー1内に配置され、基材2を保持する基材ホルダー3と、チャンバー1に繋げられ、チャンバー1内にエッチング用の処理ガスを導入するガス導入経路と、チャンバー1内に50〜500kHzの高周波出力を供給する高周波電源4と、を具備し、高周波電源4から供給された高周波出力によりチャンバー1内に前記エッチング用の処理ガスのプラズマを発生させて基材2の表面層を除去する。 (もっと読む)


【課題】本発明は、より大型な基板に膜厚均一性に優れた高品質薄膜を形成できるプラズマCVD装置及び方法を提供することを目的とする。
【解決手段】反応容器内に、直線形状又は中央で折り返した形状の誘導結合型電極を配置したプラズマCVD装置であって、前記誘導結合型電極の両端部にそれぞれ高周波電力の給電部と接地部とを設け、前記給電部と接地部の間又は前記給電部及び接地部と折り返し部との間に半波長若しくはその自然数倍の定在波が立つように高周波電力を供給する構成とし、かつ、前記誘導結合型電極の電極径を変化させるか、給電部から接地部までの少なくとも一部の電極径を10mm以下とするか、又は電極を誘電体で被覆したことを特徴とする。 (もっと読む)


【課題】太陽電池基板の自然酸化膜除去処理を、太陽電池の製造工程の中で高いスループットで行うことができる方法を提供する。
【解決手段】平行平板型プラズマCVD装置を用いて太陽電池基板の表面に反射防止膜を成膜する方法であって、処理用ガス供給装置から第1処理用ガスを供給するとともに高周波電力源から高周波電極に第1周波数の高周波電力を印加し、高周波電極と基板電極との間に窒素イオンを含むプラズマを発生させ、この窒素イオンによって太陽電池基板の酸化膜を除去する除去工程と、処理用ガス供給装置から第2処理用ガスを供給するとともに高周波電力源から高周波電極に第2周波数(>第1周波数)の高周波電力を印加し、高周波電極と基板電極との間に太陽電池基板表面に反射防止膜を成膜するプラズマを発生させ、このプラズマによって太陽電池基板表面に反射防止膜を成膜する成膜工程とを連続して行う。 (もっと読む)


【課題】生産コストを低くできるプラズマ処理装置及び基材の表面処理方法を提供する。
【解決手段】本発明に係るプラズマ処理装置は、チャンバー1と、前記チャンバー内に配置され、基材2を保持する基材ホルダー3と、前記チャンバー1に繋げられ、前記チャンバー内に処理ガスを導入するガス導入経路と、前記チャンバー内に50〜500kHzの高周波出力を供給する高周波電源4と、を具備し、前記高周波電源4から供給された高周波出力により前記チャンバー内に前記処理ガスのプラズマを発生させて前記基材2にプラズマ処理を行うことを特徴とする。 (もっと読む)


【課題】高い絶縁破壊耐圧のMIMキャパシタを提供する。
【解決手段】半導体基板上に形成された下部電極12と、前記下部電極上に形成された第1の絶縁体膜13と、前記第1の絶縁体膜上に形成される第2の絶縁体膜14と、前記第2の絶縁体膜上に形成される第3の絶縁体膜15と、前記第3の絶縁体膜上に形成される上部電極16と、を有し、前記第1の絶縁体膜における密度は、前記第2の絶縁体膜における密度よりも高く、前記第3の絶縁体膜における密度は、前記第2の絶縁体膜における密度よりも高いことを特徴とする。 (もっと読む)


【課題】 長尺な基板を長手方向に搬送しつつ成膜行なう成膜装置であって、不要な領域にプラズマが生成されることを防止し、この不要なプラズマに起因する基板の損傷等の無い高品質な製品を安定して作製できる成膜装置を提供する。
【解決手段】 第1ユニットと、基板の搬送系を有する第2ユニットとを組み合わせて構成され、かつ、成膜中に、前記第1ユニットと第2ユニットとの間に電位差を生じないことにより、前記課題を解決する。 (もっと読む)


【課題】基材とガスバリア層との密着性が、従来よりも大幅に改善されたガスバリア性フィルムを、高い生産効率で提供する。
【解決手段】連続して走行する基材10上にガスバリア層を形成するガスバリア性フィルムの製造方法であって、金属ロール電極1と、これに沿った円弧状の対向電極である接地電極2とを備えるRIE処理装置を用い、両電極1,2の間に、少なくとも酸化用ガスを含む1種類以上のガスと、気化した有機シリコン化合物とを導入する手段、及び処理空間内の圧力を3Pa以上35Pa以下とし、電源周波数を30kHz以上4MHz以下の高周波として、両電極1,2の間に、プラズマを発生させる手段により、基材10の表面にプラズマ化学気相蒸着法により、厚さ3nm以上の中間密着層を形成する工程と、中間密着層の表面に、真空蒸着法によりガスバリア層を形成する工程とを備える製造方法。 (もっと読む)


【課題】集積回路製造工程のバックエンドプロセス、およびフロントエンドプロセスにおいて利用することができる、高硬度、且つ低応力のハードマスク膜を提供する。
【解決手段】ハードマスク膜は、応力が約−600MPaから600MPaの範囲内であり、硬度は少なくとも約12Gpaである。ハードマスク膜は、PECVD処理チャンバにおいて、高密度化プラズマ後処理を複数回行うことによって、ドープ済または未ドープのシリコンカーバイドの副層を複数成膜することによって得られる。ハードマスク膜は、Si、Si、Si、B、およびBから成る群から選択される高硬度のホウ素含有膜を含む。ハードマスク膜は、ゲルマニウム含有率が少なくとも約60原子パーセントと、ゲルマニウム含有率が高いGeNハードマスク材料を含む。 (もっと読む)


【課題】プラズマ化学気相成長法(PECVD)を用いて低い温度で無機SiO2膜を堆積する方法を提供する。
【解決手段】チャンバ内でプラズマ化学気相成長法(PECVD)を用いて250℃よりも下の温度で無機SiO2膜を堆積する方法であって、オルトケイ酸テトラエチル(TEOS)及びO2を前駆体として15:1と25:1との間のO2/TEOS比で供給し、前記前駆体を、RF駆動シャワーヘッドを用いて堆積し、前記RF駆動シャワーヘッドを、高周波成分及び低周波成分を用いて駆動する。 (もっと読む)


合成環境内にて基板上でダイヤモンド材料を合成するための化学蒸着(CVD)方法であって、以下の工程:基板を供給する工程;原料ガスを供給する工程;原料ガスを溶解させる工程;及び基板上でホモエピタキシャルダイヤモンド合成させる工程を含み;ここで、合成環境は約0.4ppm〜約50ppmの原子濃度で窒素を含み;かつ原料ガスは以下:a)約0.40〜約0.75の水素原子分率Hf;b)約0.15〜約0.30の炭素原子分率Cf;c)約0.13〜約0.40の酸素原子分率Ofを含み;ここで、Hf+Cf+Of=1;炭素原子分率と酸素原子分率の比Cf:Ofは、約0.45:1<Cf:Of<約1.25:1の比を満たし;原料ガスは、存在する水素、酸素及び炭素原子の総数の原子分率が0.05〜0.40で水素分子H2として添加された水素原子を含み;かつ原子分率Hf、Cf及びOfは、原料ガス中に存在する水素、酸素及び炭素原子の総数の分率である、方法。 (もっと読む)


【課題】結晶粒間に鬆がない緻密な結晶性半導体膜(例えば微結晶半導体膜)を作製する技術を提供することを目的とする。
【解決手段】プラズマCVD装置の反応室内における反応ガスの圧力を450Pa〜13332Paとし、当該プラズマCVD装置の第1の電極と第2の電極の間隔を1mm〜20mm、好ましくは4mm以上16mm以下として、前記第1の電極に60MHz以下の高周波電力を供給することにより、第1の電極および第2の電極の間にプラズマ領域を形成し、プラズマ領域を含む気相中において、結晶性を有する半導体でなる堆積前駆体を形成し、堆積前駆体を堆積させることにより、5nm以上15nm以下の結晶核を形成し、結晶核から結晶成長させることにより微結晶半導体膜を形成する。 (もっと読む)


【課題】本発明は、従来のCVD装置で用いることの出来なかった材料により成膜を可能にし、さらに不純物が混じらない高品質の成膜を可能とした薄膜堆積方法および装置を提供することを目的とする。
【解決手段】非平衡プラズマにより原料ガス14に与えるエネルギーと、原料ガス14より生成する目的の反応生成物固有のポテンシャルエネルギーとの差分のエネルギーを求め、ポテンシャルエネルギーが不足の場合、前記差分のエネルギーを補充するレーザ光19の波長を求め、ポテンシャルエネルギーが余剰の場合、差分のエネルギーを誘導放出により放出するレーザ光19の波長を求め、非平衡プラズマ化された原料ガス14に、求めた波長のレーザ光19を照射して、原料ガス14の基底準位を前記ポテンシャルエネルギーに遷移し、原料物質より目的の反応生成物を解離または分解し、被成膜物質12に堆積して成膜する。 (もっと読む)


【課題】従来のマイクロ波の周波数よりも低い周波数のマイクロ波を処理容器内に効率良く導入できる平面アンテナを提供する。
【解決手段】平面アンテナ板31は、同心円状に第1のスロット32aおよび第2のスロット32bを有し、中心Oから第1のスロット32aの中心O32aまでの距離と、平面アンテナ板31の半径rとの比を0.35〜0.5とし、かつ中心Oから第2のスロット32bの中心O32bまでの距離と、半径rとの比を0.7〜0.85とした。また、中心Oと中心O32aとを結ぶ直線に対して、第1のスロット32aの長手方向は90°〜105°の角度であり、かつ、中心Oと中心O32bとを結ぶ直線に対して、第2のスロット32bの長手方向は75°〜85°の角度である。さらに、平面アンテナ板31におけるスロットの開口面積比率は15〜20%の範囲内である。 (もっと読む)


21 - 40 / 280