説明

Fターム[4K032AA23]の内容

鋼の加工熱処理 (38,000) | 鋼の合金成分及び不純物 (27,437) | Ni1%未満 (1,218)

Fターム[4K032AA23]に分類される特許

1 - 20 / 1,218




【課題】プレス加工性が良好であり、かつ調質熱処理後には優れた耐アブレシブ摩耗性が実現できる鋼板を提供する。
【解決手段】質量%で、C:0.10〜0.30%、Si:0.03〜1.00%、Mn:0.10〜2.50%、P:0.001〜0.030%、S:0.001〜0.030%、Cr:0〜2.00%、Ti:0〜0.25%、Nb:0〜0.25%、V:0〜1.00%、Ni:0〜2.00%、Mo:0〜1.0%、B:0〜0.0200%、T.Al:0.005〜0.070%、N:0.001〜0.008%、残部Feおよび不可避的不純物からなり、Mn+Cr:1.00〜3.00%、Ti+Nb:0.07%以上を満たす化学組成を有する鋼板であって、断面硬さが200HV以下であり、局部伸びの異方性が小さいプレス加工用焼鈍鋼板。 (もっと読む)


【課題】鋼板の板厚方向および板幅方向の硬さのばらつきを低減し、鋼板内の材質均一性に優れた高強度鋼板とその製造方法を提供する。
【解決手段】質量%で、C:0.04〜0.2%、Si:0.01〜0.5%、Mn:0.5〜2.5%を含有し、残部がFeおよび不可避的不純物からなり、かつ下記式(1)で示す炭素当量Ceqが0.50以下であり、金属組織がフェライトとベイナイトとマルテンサイトからなる組織であり、鋼板表層部分のマルテンサイトが体積分率で15%以下であり、板厚方向の硬さのばらつきがビッカース硬さでΔHV50以下であることを特徴とする鋼板内の材質均一性に優れた高強度高靭性厚肉鋼板。
【数1】
(もっと読む)


【課題】転動疲労寿命に優れ、圧延ままで冷間鍛造が可能な軸受用棒鋼の提供。
【解決手段】特定量のC、Si、Mn、P、S、Cr、Al、CaとOを含有し、残部はFe及び不純物からなる化学成分を有し、超音波疲労試験の破壊起点介在物を極値統計処理して求めた評価予測体積144mm3中の予測最大介在物幅≦20μm、予測最大介在物長さ≦800μmであり、破壊起点介在物が酸化物の場合には、平均組成がCaO:2.0〜20%、MgO:0〜20%及びSiO2:0〜10%で、かつ残部がAl2O3であって、特定の2元系、3元系及び4元系の酸化物のうちの何れかからなり、かつ、破壊起点介在物が硫化物の場合には、平均組成がCaS:100%のCaSの1元系硫化物、又はCaS:1.0%以上、MgS:0〜20%で、かつ残部がMnSであって、特定の2元系又は3元系の硫化物からなり、棒鋼の表面からR/2部位置までの最大硬さがビッカース硬さで290以下である軸受用棒鋼。 (もっと読む)


【課題】良好な鍛造性及び被削性を有し、優れた転動疲労特性を有する軸受鋼を提供する。
【解決手段】軸受鋼は、質量%で、C:0.90を超え1.20%以下、Si:0.15〜0.35%、Mn:0.20〜0.50%、Cr:1.0〜2.0%、Cu:0.30〜1.0%、Ni:0.30〜2.0%、N:0.003〜0.020%、Al:0.005〜0.050%、を含有し、残部はFe及び不純物からなり、不純物中のP、S、Ti及びOがそれぞれ、P:0.025%以下、S:0.025%以下、Ti:0.0030%以下、O:0.0020%以下であり、式(1)及び式(2)を満たす。
Cr/C≦2・・・(1)
Ni≧0.41×Cu+0.18・・・(2)
ここで、式(1)及び式(2)中の各元素記号には、対応する元素の含有量(質量%)が代入される。 (もっと読む)


【課題】本発明は、耐歪み時効特性に優れる高靱性、低降伏比高強度鋼板を提供する。
【解決手段】成分組成が、質量%で、C:0.04〜0.07%、Si:0.01〜1.0%、Mn:1.2〜3.0%、P:0.015%以下、S:0.005%以下、Al:0.08%以下、Nb:0.005〜0.05%、Ti:0.005〜0.025%、N:0.010%以下、O:0.005%以下を含有し、残部Fe及び不可避的不純物からなり、金属組織がベイナイトと島状マルテンサイトとの2相組織からなり、前記島状マルテンサイト(以下MAと呼ぶ)の面積分率が3〜15%かつ円相当径が5.0μm以下であり、MA中に含まれるγ相の面積分率が10%以下で、MA中の炭素濃度(質量%)とMAの分率(面積%)の積の値が、3.0〜4.5であることを特徴とする耐歪時効特性に優れた高靱性低降伏比高強度鋼板。 (もっと読む)


【課題】材質均一性に優れた高強度高靭性厚肉鋼板とその製造方法を提供する。
【解決手段】質量%で、C:0.04〜0.12%、Si:0.01〜0.5%、Mn:0.5〜2.5%を含有し、残部がFeおよび不可避的不純物からなり、かつ式(1)で示す炭素当量Ceqが0.49以下であり、金属組織がフェライトとベイナイトとマルテンサイトからなる組織であり、鋼板表層部分のマルテンサイトが体積分率で20%以下であり、板厚方向の硬さのばらつきがビッカース硬さでΔHV100以下であることを特徴とする材質均一性に優れた高強度高靭性厚肉鋼板。
【数1】
(もっと読む)


【課題】本発明は、TMCPでの製造を前提として、溶接入熱量300kJ/cm以上の溶接によっても溶接熱影響部の靭性が低下しない大入熱溶接用鋼材の製造方法を提供する。
【解決手段】鋼の成分組成が、質量%で、C、Si、Mn、P、S、Al、Ni、Nb、Ti:0.005〜0.02%、N:0.0035〜0.0070%、Ca、Bを含み、かつ、Ceq≦0.36を満たし、鋼素材を加熱後、鋼板表面温度850℃以下で累積圧下率40%以上で圧延を行い、仕上げ温度:FT(℃)を、Ti/N≦2.2の場合、FT(℃)≧790℃とし、Ti/N>2.2の場合、FT(℃)≧(1065−125×Ti/N)かつ、FT(℃)≧Ar変態点とし、その後、冷却開始温度を(Ar−30)℃以上の温度で、冷却停止温度を300〜500℃の範囲内の温度とし、加速冷却を行なうことを特徴とする大入熱溶接用鋼材の製造方法。 (もっと読む)


【課題】ばね鋼の疲労蓄積源となり破壊起点となるアルミナ、TiN、及び、MnSを無害化して、耐疲労特性に優れたばね鋼を提供する。
【解決手段】質量%で、C:0.4%以上、0.9%未満、Si:1.0%以上、3.0%以下、Mn:0.1%以上、2.0%以下、Al:0.01%以上、0.05%以下、REM:0.0001%以上、0.05%以下、T.O:0.0001%以上、0.003%以下、Ti:0.005%未満、N:0.015%以下、P:0.03%以下、S:0.03%以下を含有し、残部が鉄及び不可避的不純物からなり、REM、O、S、及び、Alを含む介在物にTiNが付着した複合介在物を含有することを特徴とする耐疲労特性に優れたばね鋼。 (もっと読む)


【課題】引張強度が950MPa以上で、従来の鋼材より溶接性および耐遅れ破壊特性に優れた高張力鋼板の製造方法を提供する。
【解決手段】質量%で、C:0.03〜0.25%、Si:0.01〜0.8%、Mn:0.5〜2%、P:0.010%以下、S:0.003%以下、Al:0.005〜0.1%、N:0.0005〜0.008%を含有し、溶接割れ感受性指数Pcmが0.26%以下であり、残部がFeおよび不可避的不純物からなる成分組成を有する鋼をAc変態点以上に加熱し、未再結晶温度域での累積圧下率を80%以下とする熱間圧延を行い、Ar変態点以上で熱間圧延を終了し、引き続きAr変態点以上から10℃/s以上の冷却速度で250℃以下の温度まで冷却後、1℃/s以上の平均昇温速度で再加熱し、最高到達温度を100〜400℃の範囲とする焼戻し処理を行うことを特徴とする溶接性および耐遅れ破壊特性に優れた引張強さ950MPa以上の高張力鋼板の製造方法。 (もっと読む)


【課題】0.43以上の耐久比の高強度熱間鍛造部品を提供する。
【解決手段】C:0.27〜0.37%、Si:0.30〜0.75%、Mn:1.00〜1.45%、S:0.008%〜0.030%、Cr:0.05〜0.30%、Al:0.005〜0.050%、V:0.200〜0.320%、Ti:0.0040%〜0.030%、N:0.0080〜0.0200%、残部はFe及び不純物、〔1.05≦C+(1/10)Si+(1/5)Mn+(5/22)Cr+1.65V-(5/7)S≦1.18〕を満たす。0.005μm以上のTiN個数密度≧0.4個/μm2、160mm2中のTiNの最大サイズ≦30μm。Cu、Ni及びMoの1種以上を含んでもよい。その場合〔1.05≦C+(1/10)Si+(1/5)Mn+(5/22)Cr+1.65V-(5/7)S+(1/5)Cu+(1/5)Ni+(1/4)Mo≦1.18〕を満たす。 (もっと読む)


【課題】引張強度が780MPa以上で、従来の鋼材より溶接性および耐遅れ破壊特性に優れた高張力鋼板の製造方法を提供する
【解決手段】質量%で、C:0.03〜0.20%、Si:0.01〜0.5%、Mn:0.5〜2%、P:0.03%以下、S:0.003%以下、Al:0.005〜0.1%、N:0.0005〜0.008%を含有し、溶接割れ感受性指数Pcmが0.24%以下であり、残部がFeおよび不可避的不純物からなる成分組成を有する鋼をAc変態点以上に加熱し、未再結晶温度域での累積圧下率を70%以下とする熱間圧延を行い、Ar変態点以上で熱間圧延を終了し、引き続きAr変態点以上から10℃/s以上の冷却速度で250℃以下の温度まで冷却後、1℃/s以上の平均昇温速度で再加熱し、最高到達温度を100〜400℃の範囲とする焼戻し処理を行うことを特徴とする溶接性および耐遅れ破壊特性に優れた引張強さ780MPa以上の高張力鋼板の製造方法。 (もっと読む)


【課題】高い曲げ疲労強度、面疲労強度及び被削性を有し、熱処理歪みを低減できる、熱間鍛造用圧延棒鋼又は線材を提供する
【解決手段】本発明による熱間鍛造用圧延棒鋼又は線材は、質量%で、C:0.10〜0.25%、Si:0.01〜0.10%、Mn:0.50〜1.00%、S:0.003〜0.050%、Cr:1.60〜2.00%、Mo:0.10%以下(0%を含む)、Al:0.025〜0.050%、N:0.0100〜0.0250%を含有し、残部はFe及び不純物からなり、式(1)で定義されるfnが、1.82〜2.10である。
fn=Cr+2×Mo (1)
さらに、半径Rを有する上記棒鋼又は線材の横断面CS内の複数の測定位置C1〜C17における式(2)で定義されるMs値のうち、最大値と最小値との差分値が10以下である。
Ms=550−361×C−39×Mn−20×Cr−5×Mo (2) (もっと読む)


【課題】0.47以上の耐久比とを備える高強度熱間鍛造部品の素材として好適な熱間鍛造用圧延棒鋼を提供する。
【解決手段】C:0.27〜0.37%、Si:0.30〜0.75%、Mn:1.00〜1.45%、S:0.008%以上で0.030%未満、Cr:0.05〜0.30%、Al:0.005〜0.050%、V:0.200〜0.320%、N:0.0080〜0.0200%を含み、残部はFe及び不純物からなり、〔1.05≦C+(1/10)Si+(1/5)Mn+(5/22)Cr+1.65V−(5/7)S≦1.18〕である熱間鍛造用圧延棒鋼。Feの一部に代えてCu、Ni及びMoの1種以上を含んでもよい。その場合は〔1.05≦C+(1/10)Si+(1/5)Mn+(5/22)Cr+1.65V−(5/7)S+(1/5)Cu+(1/5)Ni+(1/4)Mo≦1.18〕を満たす必要がある。 (もっと読む)


【課題】引張強度が780MPa以上で、従来の鋼板よりも曲げ加工性に優れた直接焼入れ焼戻し型高張力鋼板およびその製造方法を提供する。
【解決手段】質量%で、C:0.06〜0.25%、Si:0.01〜0.8%、Mn:0.5〜2%、P:0.010%以下、S:0.003%以下、Al:0.005〜0.1%、N:0.0005〜0.008%を含有し、さらにMo:0.01〜1%、Nb:0.001〜0.1%、V:0.001〜0.5%、Ti:0.001〜0.1%の中から選ばれる1種以上を含有し、残部Feおよび不可避的不純物からなり、鋼板の表面から1/4板厚部までの鋼板表面に平行な面の一様伸びが3%以上であることを特徴とする曲げ加工性に優れた直接焼入れ焼戻し型高張力鋼板。 (もっと読む)


【課題】大型鋼構造物に用いて好適な多層溶接部の低温靭性に優れる板厚が50mm以上の厚肉高張力鋼板およびその製造方法を提供する。
【解決手段】質量%で、C:0.005〜0.02%、Si:0.3%以下、Mn:0.5〜5%、P:0.015%以下、S:0.005%以下、Ni:0.5〜5%、Cr:0.02〜3%、Al:0.01〜0.08%、N:0.007%以下、B:0.0003〜0.003%、必要に応じて、Cu、Mo、 V、 Nb、Ca、REMの中から1種または2種以上を含有し、残部Feおよび不可避的不純物からなる鋼板。上記成分を含有するスラブを、Ac点〜1150℃に再加熱し、累積圧下率が50%以上となるように熱間鍛造および/または熱間圧延を行い所定の板厚とした後、直接焼入れまたは再加熱焼入れし、450〜650℃で焼戻す。 (もっと読む)


【課題】降伏強度400MPa以上、CTOD値0.3mm以上、板厚40mm以上の靭性に優れた高張力鋼板およびその製造方法の提供。
【解決手段】質量%で、C:0.01〜0.08%、Si:0.01〜0.3%、Mn:1.0〜2.0%、P:0.012%以下、S:0.005%以下、Cu:0.8〜2.0%、Ni:0.1〜2.5%、Cr:0.01〜0.5%、Ti:0.005〜0.03%、Al:0.001〜0.050%及びN:0.001〜0.01%を含有し、残部はFe及び不純物からなり、不純物中のNb:0.001%以下、B:0.0003%以下、O:0.003%以下であり化学組成を有し、板厚中心部における結晶粒径20μm以下のフェライト分率が60%以上、板厚中心部における島状マルテンサイト組織の面積率が4.0%以下、板厚中心部における介在物量がJIS G 0555における点算法にて0.020%以下、板厚中心部におけるC含有量が0.12%以下であることを特徴とする、板厚中心部の降伏強度が400MPa以上の靭性に優れた高張力鋼板。 (もっと読む)


【課題】TSが780MPa以上で、溶接施工時の予熱温度が50℃以下の低い温度であっても溶接割れを発生しない高張力鋼板およびその製造方法の提供。
【解決手段】質量%で、C:0.02〜0.10%、Si:0.01〜0.2%、Mn:1.0〜2.0%、P:0.01%以下、S:0.002%以下、Cu:0.1〜0.5%、Ni:0.1〜1.0%、Cr:0.5〜1.5%、Nb:0.01〜0.05%、Ti:0.005〜0.03%、B:0.0005〜0.0025%、Al:0.03〜0.08%及びN:0.0005〜0.0050%を含有し、残部はFe及び不純物からなり、板厚中心部におけるCが0.10%以下、板厚中心部における旧オーステナイト粒のアスペクト比が2.0以上、板厚中心部におけるM−A組織が5.0%以下であることを特徴とする引張強度780MPa以上の高張力鋼板およびその製造方法。Mo、V又はSnを含有してもよい。 (もっと読む)


【課題】大型構造用鋼として適用可能な、溶接熱影響部靭性に優れた鋼材及び溶接継手と溶接継手の製造方法を提供する。
【解決手段】質量%で、C:0.03〜0.16%、Mn:0.3〜2.0%、Ti:0.016〜0.030%、V:0.025〜0.100%、B:0.0016〜0.0050%、N:0.0050〜0.0200%を含有し、0.3[Ti]+1.35[B]−0.0016≦[N]≦0.3[Ti]+0.12[V]+0.0035、及び、Y−0.02≦X≦Y+0.02を満足する鋼材。X=[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/5+2[Nb]、Y=1.71×10-4×H+0.32。[M]は元素Mの含有量[質量%]、Hは想定溶接入熱[kJ/cm]。想定溶接入熱Hで溶接を行った際の溶接熱影響部の有効結晶粒径は35μm以下である。 (もっと読む)


1 - 20 / 1,218