説明

Fターム[4K032CB00]の内容

鋼の加工熱処理 (38,000) | 熱間加工率 (881)

Fターム[4K032CB00]の下位に属するFターム

Fターム[4K032CB00]に分類される特許

1 - 20 / 102



【課題】引張強度が780MPa以上で、従来の鋼板よりも曲げ加工性に優れた直接焼入れ焼戻し型高張力鋼板およびその製造方法を提供する。
【解決手段】質量%で、C:0.06〜0.25%、Si:0.01〜0.8%、Mn:0.5〜2%、P:0.010%以下、S:0.003%以下、Al:0.005〜0.1%、N:0.0005〜0.008%を含有し、さらにMo:0.01〜1%、Nb:0.001〜0.1%、V:0.001〜0.5%、Ti:0.001〜0.1%の中から選ばれる1種以上を含有し、残部Feおよび不可避的不純物からなり、鋼板の表面から1/4板厚部までの鋼板表面に平行な面の一様伸びが3%以上であることを特徴とする曲げ加工性に優れた直接焼入れ焼戻し型高張力鋼板。 (もっと読む)


【課題】耐火鋼材とその製造方法を提供する。
【解決手段】質量%で、C:0.01〜0.1%、Si:0.01〜1.0%、Mn:0.1〜2.0%、P:0.030%以下、S:0.030%以下、A1:0.003〜0.1%、Mo:0.010〜0.30%、Nb:0.010〜0.20%、V:0.005〜0.50%を、炭素当量Ceqが0.46%以下を満足するように調整して含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材を、1000〜1350℃の範囲の温度に加熱したのち、圧延終了温度が850℃以上となる熱間圧延を行い、熱間圧延後、(Ar3変態点−30℃)〜(Ar3変態点−130℃)の範囲の温度まで空冷または加速冷却したのち、さらに、(Ar3変態点−30℃)〜(Ar3変態点−130℃)の範囲の温度で圧下率:1.0〜10%とする、少なくとも1パスの熱間圧延を行う。 (もっと読む)


【課題】冷間成形角形鋼管の管端にダイアフラムや他の冷間成形角形鋼管を溶接するにあたって、角部表層の熱影響部の軟化を抑制して歪みの集中を防止し、耐震安全性の高い建築構造物の支柱を得るための溶接方法および溶接継手を提供する。
【解決手段】強度が550〜670MPa、表層部の平均のビッカース硬さが225以下、表層部と板厚中央部の平均のビッカース硬さの差が60以下の鋼板を冷間加工して得た冷間成形角形鋼管1の管端に開先を形成し、冷間成形角形鋼管の管端にダイアフラム2または他の冷間成形角形鋼管を、溶接入熱30kJ/cm以下かつパス間温度250℃以下で多層溶接する。ここで、表層部とは鋼板の表裏面から板厚方向に1〜5mmの領域を、また、板厚中央部とは板厚中心±2mmの領域を指す。 (もっと読む)


【課題】圧力容器等の溶接鋼構造物用として好適な板厚方向の耐疲労特性に優れた厚鋼板およびその製造方法を提供する。
【解決手段】少なくとも、鋼板の圧延面の両側または片側から板厚方向に2mmの位置から板厚の3/10位置までの範囲に、板面に平行な(110)面のX線強度比が2.0以上となる集合組織を有し、板厚方向圧縮残留応力の平均値が160MPa以上、板面に平行な(100)面のX線強度比が1.1以下で、C、Si、Mnを含み、さらにTi、Nbの1種または2種、必要に応じて、Cu、Ni、Cr、Mo、V、W、Zr、B、Alの1種または2種以上、残部Feおよび不可避的不純物からなる組成を有する厚鋼板。上記組成鋼にオーステナイト部分再結晶温度以上の温度域で累積圧下率:10%以上とする第一の圧延と、圧延面の両側または片側から板厚方向に2mmの位置から板厚の3/10位置までに相当する範囲が二相組織となる温度域で、各パスの平均圧下率が3.5%未満でかつ累積圧下率:50%以上となる第二の圧延を有する熱間圧延を施し、600℃以上で終了後、冷却速度1℃/s以上で加速冷却する。 (もっと読む)


【課題】連続鋳造鋳片の凝固組織および凝固二次組織の微細化および均一化を図ることが可能な連続鋳造方法およびこの連続鋳造方法による鋳片を提供する。
【解決手段】質量%で、C:0.03%-0.20%,Si:0.005%-2.0%,Mn:0.2%-3.5%,P:0.1%以下およびS:0.01%以下を含有し、Bi,SnおよびTeのうちから選ばれた第1の構成元素の1種以上を合計で0.0001%-0.03%を含有し、残部がFeおよび不純物からなる鋳片の連続鋳造方法であって、前記鋳片の厚さ方向中心における結晶粒径をdとし、前記第1の構成元素を合計で0.0001%未満含有し、かつ圧下しないで鋳造した連続鋳造鋳片の厚さ方向中心における結晶粒径をd0とした場合に、dとd0の比の値d/d0が0.1-0.8となるように鋳片の厚さ方向中心部が凝固した直後に圧下することを特徴とする鋳片の連続鋳造方法、およびこの方法で得られた鋳片。 (もっと読む)


【課題】耐候性に優れた鋼材を提供する。
【解決手段】質量%で、C:0.06%超え0.14%未満、Si:0.05%以上2.00%以下、Mn:0.20%以上2.00%以下、P:0.005%以上0.030%以下、S:0.0001%以上0.0200%以下、Al:0.001%以上0.100%以下、Cu:0.10%以上1.00%以下、Ni:0.10%以上0.65%以下、Mo:0.001%以上1.000%以下、好ましくはMo:0.005%以上1.000%以下、Nb:0.005%以上0.200%以下を含有し、残部が鉄および不可避的不純物からなることを特徴とする耐候性に優れた鋼材。 (もっと読む)


【課題】表面疵のない美麗な橋梁用鋼板を製造する。
【解決手段】Si、及び、Nbを含有するスラブを加熱した後、熱間圧延を施して橋梁用鋼板を製造する製造方法において、加熱炉で前記スラブを加熱する際、下記式(1)で定義する過加熱度DOHを、1.1以下に制御することを特徴とする橋梁用鋼板の製造方法。
過加熱度DOH=∫t1t2f(t)dt/{(1170)・(t2−t1)}・・・(1)
f(t):スラブ表面の温度上昇曲線、t1:スラブ表面の温度が1170℃に達した時間、t2:スラブを加熱炉から抽出した時間 (もっと読む)


【課題】強度をいっそう向上させ、かつ切削性を保持した非調質熱間鍛造鋼を製造する方法を提供する。
【解決手段】微細V炭化物を析出させたフェライト−パーライト組織の高強度非調質熱間鍛造鋼の製造方法であって、C:0.30〜0.60質量%、Si:0.50質量%以下、Mn:0.10〜0.60質量%、V:0.20〜0.80質量%、S:0.05質量%以下、P:0.05質量%以下、N:0.0100質量%以下を含有し、残部がFeおよび不可避的不純物からなる鋼を、熱間鍛造後に、熱間鍛造の終了温度から700℃以下550℃以上における温度まで2.0℃/s以上で急速冷却し、20〜100sec経過するまで冷却速度が0℃/s以上2.0℃/s未満となるように、かつ温度を500℃以上に保持または冷却し、400℃以下の温度まで2.0℃/s以上で再び急速冷却することを特徴とする。 (もっと読む)


【課題】船舶の甲板上という過酷な大気腐食環境で良好な耐食性を発揮すると共に、船舶上部構造物に要求される機械特性、溶接性、熱間加工性等を具備する船舶上部構造物用耐食鋼材を提供する。
【解決手段】C:0.01〜0.30%(質量%の意味、以下同じ)、Si:0.05〜1.0%、Mn:0.1〜2.0%、P:0.005〜0.04%、S:0.0005〜0.01%、Al:0.005〜0.10%、Cu:0.10〜5.0%、Ni:0.10〜5.0%、Cr:0.010〜0.4%、Ti:0.005〜0.06%、およびN:0.0030〜0.008%を満たし、残部が鉄および不可避不純物からなり、かつ、Tiの含有量[Ti]とNの含有量[N]の比([Ti]/[N])が1.5以上17.0以下であることを特徴とする船舶上部構造物用耐食鋼材。 (もっと読む)


【課題】冷間鍛造性と冷間鍛造後の被削性に優れ、冷鍛窒化部品に高い芯部硬さ、高い表面硬さ及び深い有効硬化層深さを具備できる冷鍛窒化用鋼の提供。
【解決手段】C:0.01〜0.15%、Si≦0.35%、Mn:0.10〜0.90%、P≦0.030%、S≦0.030%、Cr:0.50〜2.0%、V:0.10〜0.50、Al:0.01〜0.10%、N≦0.0080%及びO≦0.0030%を含有し、残部はFeおよび不純物からなり、〔399×C+26×Si+123×Mn+30×Cr+32×Mo+19×V≦160〕、〔20≦(669.3×logeC−1959.6×logeN−6983.3)×(0.067×Mo+0.147×V)≦80〕、〔140×Cr+125×Al+235×V≧160〕及び〔90≦511×C+33×Mn+56×Cu+15×Ni+36×Cr+5×Mo+134×V≦170〕である化学組成を有する冷鍛窒化用鋼。Feの一部に代えて、特定量のMo、Cu、Ni、Ti、Nb、Zr、Pb、Ca、Bi、Te、Se、Sbのうちの1種以上の元素を含有してもよい。 (もっと読む)


【課題】耐候性に優れた溶接構造用鋼材を提供する。
【解決手段】質量%で、C:0.020%以上0.140%未満、Si:0.05%以上2.00%以下、Mn:0.20%以上2.00%以下、P:0.005%以上0.025%以下、S:0.0001%以上0.0200%以下、Al:0.001%以上0.100%以下、Cu:0.10%以上1.00%以下、Ni:1.10%以上5.00%以下、W:0.06%以上1.00%以下を含有し、さらに、Nb:0.009%以上0.200%以下、Sn:0.005%以上0.200%以下の1種または2種を含み、残部が鉄および不可避的不純物からなる。 (もっと読む)


【課題】引張強さが1150MPa以上で、板厚が7〜50mm程度の高張力鋼板に対して、優れた曲げ加工性と低温靱性を付与する。
【解決手段】質量%で、C:0.10〜0.25%、Si:0.05〜1.5%、Mn:0.5〜2.0%、Cr:0.3〜2.2%、Mo:0.2〜1.4%、V:0.03〜0.1%、Al:0.005〜0.1%、N:0.0005〜0.006%、P:0.02%以下、S:0.005%以下およびB:0.0003%未満を含有し、かつ次式(1)の関係を満足し、残部はFeおよび不可避的不純物からなる鋼組成にすると共に、体積分率で95%以上がマルテンサイト組織でかつ、該マルテンサイト組織における旧オーステナイト粒の平均粒径が円相当径で20μm以下の鋼組織を有し、引張強さが1150MPa以上とする。
0.8≦0.5[%Cr]+1.2[%Mo]+5[%V]≦2.1・・・(1) (もっと読む)


【課題】従来の高強度ばね鋼に対して、C、Si、Mn、CrおよびMoの添加量の適正化を行うことによって、腐食時に発生する孔食の深さを抑制し、高強度でありながら、耐孔食性ならびに腐食疲労特性に優れた高強度のばね鋼をその好ましい製造方法とともに提供する。
【解決手段】C:0.35質量%超0.50質量%未満、Si:1.75質量%超3.00質量%以下、Mn:0.2質量%以上1.0質量%以下、Cr:0.01質量%以上0.04質量%以下、P:0.025質量%以下、S:0.025質量%以下、Mo:0.1質量%以上1.0質量%以下およびO:0.0015質量%以下を、PC=4.2×([C]+[Mn])+0.1×(1/[Si]+1/[Mo])+20.3×[Cr]+0.001×(1/[N])で算出されるPC値が3.3超8.0以下の条件下に含有する。 (もっと読む)


【課題】歪時効後の脆性破壊発生抑止特性に優れた極低温用厚鋼板を低コストで提供。
【解決手段】質量%で、C:0.01〜0.12%、Si:0.01〜0.3%、Mn:0.4〜2.0%、P:0.05%以下、S:0.008%以下、Ni:5.0超〜10.0%未満、Al:0.002〜0.05%、N:0.005%以下を含有し、残部はFeおよび不純物からなり、板厚(1/4)t位置での残留γ量が3.0体積%以上であり、かつ2000倍の倍率でEBSP法により観察した15°以上の大角粒界で囲まれる組織単位の円相当粒径の平均値が板厚(1/4)t位置で5.5μm以下であり、さらに10000倍の倍率でEBSP法により観察した1の結晶粒内における隣接測定点間のミスオリエンテーションの平均値GAMが0.85°以上であることを特徴とする歪時効後の脆性破壊発生抑止特性に優れた極低温用厚鋼板およびその製造方法。 (もっと読む)


【課題】冷間鍛造性に優れるだけでなく、浸炭時の粗粒化抑制能にも優れることから高い耐疲労強度を有する肌焼鋼を製造するための方法について提案する。
【解決手段】C:0.10〜0.35質量%、Si:0.01〜0.50質量%、Mn:0.40〜1.50質量%、P:0.02質量%以下、S:0.03質量%以下、Al:0.04〜0.10質量%、Cr:0.5〜2.5質量%、B:0.0005〜0.0050質量%、Nb:0.003〜0.050質量%、Ti:0.003質量%以下およびN:0.0080質量%未満を含有し、残部はFe及び不可避不純物からなる鋼素材を、一旦、1150℃以上の温度に加熱した後に500℃以下まで冷却し、その後に1000℃以下に加熱後、850℃以上の温度にて加工を終了したのち、800〜500℃の温度域を0.1〜1.0℃/sの冷却速度で冷却する。 (もっと読む)


【課題】 一般構造用圧延鋼を用いて安定した組織や硬さが得られるようにした鋼製ナットを提供する。
【解決手段】 一般構造用圧延鋼(SS400)製の棒材を1200°C以上1300°C以下の範囲内の温度に加熱して固溶熱処理を行い、このオーステナイト状態においてナットブランクに熱間鍛造するとともに、鍛造終止時のナットブランクの表面温度を760°C以上900°C以下の範囲内の温度にコントロールし、次いで、50°C以下の温度に水冷することによりHRC32〜44の硬さに焼入れし、その後の焼戻しを行って調質することによりJIS B1181附属書2に規定する強度分布5T〜10Tの硬さを有するナットを製造する。 (もっと読む)


【課題】高温でのクリープ強度に優れたオーステナイト系ステンレス鋼を提供する。
【解決手段】
本実施の形態によるオーステナイト系ステンレス鋼は、質量%で、Cr:17〜19%、Ni:30〜32%、Nb:3.0〜3.6%を含有し、残部はFe及び不純物からなる。本実施の形態によるオーステナイト系ステンレス鋼では、700℃以上の高温域で時効処において、結晶粒30の粒内にNiNbないしはFeNb40が析出し、粒界10にFeNb20が析出する。これらの金属間化合物(NiNb及びFeNb)により、700℃以上の高温域におけるクリープ強度が向上する。 (もっと読む)


【課題】クランクシャフトの製造において、フェライトの生成を極力抑制して窒化時の時効硬化を円滑に進行させる。
【解決手段】熱間鍛造後に冷却され、金属組織におけるベイナイトの面積率が70%以上であり、下記数1〜数3において、3.80<Kf、Hf<19.5、Hg>18.8を満たす。
[数1]
Kf=5[C%]−0.168[Si%]+1.8[Mn%]+0.4[Cr%]+2.5[Mo%]+1.5[V%]−1
[数2]
Hf=24.96×([C%]−(1/18)[Si%]+(1/12)[Mn%]+(1/6)[Cr%]+0.01+(1/7)[Mo%]+(4/5)[V%])
[数3]
Hg=32.16×([C%]+(3/13)[Si%]+(1/22)[Mn%]+(1/18)[Cr%]+(3/10)[Mo%]+(5/7)[V%]) (もっと読む)


長期間の溶接後熱処理(PWHT、Post Weld Heat Treatment、PWHT)を行っても強度及び靭性の低下が発生しないPWHT抵抗性に優れた鋼板を提供する。溶接後熱処理抵抗性に優れた高強度鋼板及びその製造方法は、重量%で、C:0.1〜0.3%、Si:0.15〜0.50%、Mn:0.6〜1.2%、P:0.035%以下、S:0.020%以下、Al:0.001〜0.05%、Cr:0.01〜0.35%、Mo:0.005〜0.2%、V:0.005〜0.05%、Nb:0.001〜0.05%、Ti:0.001〜0.05%、Ca:0.0005〜0.005%、Ni:0.05〜0.5%を含み、Cu:0.005〜0.5%、Co:0.005〜0.2%及びW:0.005〜0.2%からなる群より選択された1種以上、残りはFe及び不可避な不純物を含んでなる。 (もっと読む)


1 - 20 / 102