説明

Fターム[4K033MA03]の内容

電磁鋼板の製造 (7,545) | 方向性鋼板の2次再結晶焼鈍 (375) | 雰囲気 (72)

Fターム[4K033MA03]に分類される特許

1 - 20 / 72


【課題】製品コイル内の鉄損が均一かつ極めて低い極薄方向性電磁鋼板の製造方法を提案する。
【解決手段】mass%で、C:0.04〜0.12%、Si:1.5〜5.0%、Mn:0.01〜1.0%、Ni:0.10〜1.0%、sol.Al:0.010〜0.040%、N:0.004〜0.02%、Cu:0.02〜1.0%、Sb:0.01〜0.10%、SおよびSeのうちから選ばれる1種または2種:合計0.005〜0.05%を含有する鋼スラブを熱間圧延し、冷間圧延して最終板厚0.12〜0.20mmの冷延板とし、一次再結晶焼鈍し、仕上焼鈍する方向性電磁鋼板の製造工程において、上記鋼スラブのsol.Al/Nの値を2.0〜2.8の範囲とし、かつ、仕上焼鈍における二次再結晶前の鋼板を775〜875℃の温度域に40〜200時間保定することを特徴とする方向性電磁鋼板の製造方法を提案する。 (もっと読む)


【課題】製品コイル内の鉄損が均一かつ極めて低い極薄方向性電磁鋼板の製造方法を提案する。
【解決手段】mass%で、C:0.04〜0.12%、Si:1.5〜5.0%、Mn:0.01〜1.0%、sol.Al:0.010〜0.040%、N:0.004〜0.02%、SおよびSeを合計で0.005〜0.05含有する鋼スラブを熱間圧延し、冷間圧延し、一次再結晶焼鈍し、仕上焼鈍する方向性電磁鋼板の製造方法において、前記鋼スラブにおけるsol.AlとNの含有量の比(sol.Al/N)と、二次再結晶焼鈍時の鋼板板厚d(mm)とが、4d+1.52≦sol.Al/N≦4d+2.32の式を満たし、かつ、前記仕上焼鈍の加熱過程で二次再結晶前の鋼板を775〜875℃の温度に40〜200時間保持した後、875〜1050℃の温度域を昇温速度10〜60℃/hrで加熱し、二次再結晶と純化処理を施す。 (もっと読む)


【課題】中間焼鈍において、従来技術よりも効率よく脱炭することができ、薄物でも安定して低鉄損が得られる方向性電磁鋼板の有利な製造方法を提案する。
【解決手段】C:0.02〜0.15%、Si:2.0〜7.0%、Mn:0.005〜0.3%、酸可溶性Al:0.01〜0.05%、N:0.002〜0.012%、SおよびSeのうちから選ばれる1種または2種を合計で0.05%以下を含有する鋼スラブを熱間圧延し、1回以上の中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚とした後、一次再結晶焼鈍を施し、その後、仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、上記いずれかの中間焼鈍において、鋼板表面に鉄系酸化物層を形成し、必要に応じて還元して純鉄層を形成した後、脱炭することを特徴とする方向性電磁鋼板の有利な製造方法。 (もっと読む)


【課題】方向性電磁鋼板を仕上焼鈍する際に発生するコイル内各位置の温度の不均一分布を改善し、形状不良および鉄損劣化を効果的に抑制することができる仕上焼鈍用インナーケースと、そのインナーケースを用いた仕上焼鈍方法を提案する。
【解決手段】バッチ式箱型焼鈍炉で方向性電磁鋼板の素材コイルを仕上焼鈍する際、アップエンドに載置したコイルに被せるインナーケースにおいて、インナーケース上面中心部にコイルの内周面と対向する外管と、その内側に内管を配設した2重管構造の円筒状凹部を有し、好ましくは、上記円筒状凹部の外管の外径がコイル内径の0.3倍以上、かつ上記外管とコイル内周面との間の距離が50mm以上であり、円筒状凹部の内管の内側断面積が、円筒状凹部の内側断面積の0.3〜0.7倍である仕上焼鈍用インナーケース。 (もっと読む)


【課題】磁気特性に優れる方向性電磁鋼板を生産性よく製造する有利な方法を提案する。
【解決手段】mass%で、C:0.020〜0.15%、Si:2.5〜7.0%、Mn:0.005〜0.3%、sol.Al:0.01〜0.05%、N:0.002〜0.012%、SおよびSeのうちの1種または2種:合計で0.05%以下、Sn:0.01〜0.20%、Sb:(0.2×Sn)%以上0.10%以下、Ni:{0.7×(Sn+Sb)}%以上1.0%以下を含有する鋼スラブを、熱間圧延し、中間焼鈍を挟む2回以上の冷間圧延し、一次再結晶焼鈍し、仕上焼鈍する方向性電磁鋼板の製造方法において、上記鋼スラブのSn,SbおよびNiの含有量に応じて、熱間圧延における1150℃以下での圧下率Rおよび中間焼鈍における最高到達温度T(℃)を適正範囲に制御することを特徴とする方向性電磁鋼板の製造方法。 (もっと読む)


【課題】積み変圧器を作製した場合にあって、特に、磁束密度Bが1.93T以上の方向性電磁鋼板を用いて変圧器を作製したときに、そのコーナー部分など、磁束が圧延方向からずれて曲がる部位があっても、より効果的に鉄損劣化を抑えることができる方向性電磁鋼板を得る。
【解決手段】一次再結晶焼鈍に先立ち、鋼板の表面に電子線を照射することにより、鋼板の表面を算術平均粗さRaで0.15μm以下の平滑面とする。 (もっと読む)


【課題】一段の鉄損低減を図った方向性電磁鋼板の製造方法を提供する。
【解決手段】脱炭焼鈍において、連続焼鈍で、かつ、雰囲気酸化性P(H2O)/P(H2)≦0.05を条件として、少なくとも500〜700℃の昇温速度を50℃/s以上で700〜750℃の温度域まで加熱し、ついで、雰囲気酸化性P(H2O)/P(H2)≦0.05を条件として、700℃未満の温度域まで冷却し、さらに、雰囲気酸化性P(H2O)/P(H2)≧0.3を条件として、800〜900℃の温度域まで再加熱し、保持する。 (もっと読む)


【課題】従来の二方向性電磁鋼板とは異なる結晶方位を有しながらも、二方向性電磁鋼板としての特徴を有する新規な電磁鋼板とその製造方法を提案する。
【解決手段】mass%で、C:0.002〜0.10%、Si:1.0〜8.0%およびMn:0.005〜1.0%を含有し、さらに、Al:0.0100%以下、N:0.0050%以下、S:0.0050%以下およびSe:0.0050%以下を含有する鋼素材を熱間圧延し、必要に応じて熱延板焼鈍し、1回または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とした後、脱炭を兼ねた一次再結晶焼鈍し、その後、仕上焼鈍する一連の方向性電磁鋼板の製造方法において、上記冷間圧延における最終冷延圧下率を94%以上とすることで、結晶粒の方位が{110}<112>から20°以内である比率が結晶粒の面積率で50%以上である電磁鋼板を得る。 (もっと読む)


【課題】数mの大きさの大型変圧器用電磁鋼板において、特に、板厚:0.220mm以下の電磁鋼板であっても、剪断加工を行った際の磁気特性劣化を低減できる鋼板を提供する。
【解決手段】電磁鋼板の成分として、質量%で、C:0.005%以下、Si:1.0〜8.0%およびMn:0.005〜1.0%を含み、かつNb、Ta、VおよびZrのうちから選んだ1種または2種以上を合計で10〜50質量ppm含有して、残部がFeおよび不可避的不純物からなり、上記Nb、Ta、VおよびZrは含有量の少なくとも10%が析出物として存在し、該析出物の直径(円相当径)を平均で0.02〜3μmとし、かつ直径:10μm以上の介在物を1mm2当たり1個未満とし、さらに該鋼板の二次再結晶粒の平均粒径が5mm以上とする。 (もっと読む)


【課題】磁区細分化を目的とした熱歪部周辺の絶縁コーティングの剥離を防止し、ビルディングファクタを増大させることなく、層間抵抗の劣化を防止した方向性電磁鋼板を提供する。
【解決手段】圧延方向に対するゴス方位粒の[001]軸のずれ角を、平均で±10°以内とし、該下地被膜に、窒素化合物がN換算で0.02g/m2以上含有し、さらに、一定長さA(μm)と、該一定長さA(μm)当たりの下地被膜と鋼板との界面の長さの合計L(μm)とを、以下の式(1)で規定される接触度Fで1.5以上とすることを特徴とする方向性電磁鋼板。
F= L/A ・・・ (1) (もっと読む)


【課題】鉄損特性に優れる方向性電磁鋼板を有利に製造する方法を提案する。
【解決手段】質量%で、C:0.02〜0.12%、Si:2.0〜4.0%、Mn:0.02〜0.20%、sol.Al:0.01〜0.05%、N:0.004〜0.012%、Sb:0.01〜0.20s%、Cu:0.005〜0.20%、Sおよび/またはSeを0.010〜0.040%含有する鋼スラブを用いて方向性電磁鋼板を製造するに際し、MgO100質量部に対してSnOを1〜10質量部、B化合物をB換算で0.001〜1質量部含有し、かつSnOとB化合物とが、[B化合物(B換算質量部)]>0.034×10−0.119×[SnO2(質量部)]の関係を満たす焼鈍分離剤を用い、昇温過程の700〜860℃で10〜200時間保持し、H含有雰囲気下で900〜1050℃を2〜50℃/hrで加熱する最終仕上焼鈍を施す。 (もっと読む)


【課題】実機トランスに組上げた場合に、優れた低騒音性を発現する電子ビーム照射による磁区細分化処理を行った方向性電磁鋼板を提供する。
【解決手段】鋼板の歪導入側のフォルステライト被膜の膜厚Waと歪非導入側のフォルステライト被膜の膜厚Wbの比(Wa/Wb)が0.5以上で、かつ歪導入側の鋼板面における磁区不連続部の平均幅が150〜300μm、歪非導入側の鋼板面における磁区不連続部の平均幅が250〜500μmとする。 (もっと読む)


【課題】磁区細分化用の溝を形成した素材の鉄損をさらに低減し、かつ実機トランスに組上げた場合に、優れた低鉄損特性を得ることができる方向性電磁鋼板を提供する。
【解決手段】鋼板表面に形成された溝の底部におけるフォルステライト被膜厚みが0.3μm以上で、溝直下にGoss方位から10°以上の方位差で、かつ粒径が5μm以上の結晶粒を有する溝の存在比率である溝頻度が20%以下で、さらに、フォルステライト被膜および張力コーティングにより、鋼板に付与する合計張力が、圧延方向で10.0MPa以上、圧延方向に対して直角方向で5.0MPa以上で、かつこれらの合計張力が、次式の関係を満足する。1.0≦A/B≦5.0。A:圧延方向のフォルステライト被膜および張力コーティングによる合計張力。B:圧延方向に対して直角方向のフォルステライト被膜および張力コーティングによる合計張力。 (もっと読む)


【課題】磁区細分化用の線状溝を形成した素材の鉄損をさらに低減し、かつ実機トランスに組上げた場合に、優れた低鉄損特性を得ることができる方向性電磁鋼板を提供する。
【解決手段】鋼板の板厚が0.30mm以下で、線状溝の圧延方向での間隔が2〜10mmの範囲で、線状溝の深さが10μm以上で、線状溝の底部におけるフォルステライト被膜厚みが0.3μm以上で、フォルステライト被膜およ該張力コーティングにより、鋼板に付与する合計張力が、圧延方向で10.0MPa以上で、かつ圧延方向に、1.7T,50Hzの交番磁界をかけたときの、鉄損W17/50中の渦電流損の占める割合を65%以下とする。 (もっと読む)


【課題】近年の低鉄損化の要求に応えた方向性電磁鋼板を提供する。
【解決手段】レーザー照射により磁区細分化を行う、磁束密度B8が1.91T以上の方向性電磁鋼板において、フォルステライト被膜中のN含有量を3.0質量%以下に抑制する。 (もっと読む)


【課題】実機トランスに組上げた場合に、優れた低騒音性および低鉄損特性を発現するレーザー照射による磁区細分化処理を行った方向性電磁鋼板を提供する。
【解決手段】方向性電磁鋼板の表面に形成するフォルステライト被膜について、1〜20mass%のTiと、0.02〜0.4mass%のBを含有させ、かつこれらの被膜中Nに対する質量比(Ti+B)/Nの範囲を0.7〜1.3とする。 (もっと読む)


【課題】レーザー照射により磁区構造を制御して鉄損を低減させる方向性電磁鋼板において、より大きな鉄損低減効果を有する方向性電磁鋼板を、その有利な製造方法と共に提供する。
【解決手段】表面にフォルステライト被膜および張力コーティングをそなえる方向性電磁鋼板を製造するに際し、
(1) 該方向性電磁鋼板中に混入するCr量を0.1質量%以下に抑制する、
(2) 該フォルステライト被膜の被覆量が酸素目付量で3.0g/m2以上とし、かつ該フォルステライト被膜下部における該方向性電磁鋼板の地鉄部に食い込んだアンカー部の厚みを1.5μm以下とする、
(3) 長さ:280mmの試験片の片面にのみ該フォルステライト被膜を有する状態での鋼板の反り量が10mm以上で、かつ該片面にのみ該フォルステライト被膜と該張力コーティングとを有する状態での鋼板の反り量が20mm以上とする。 (もっと読む)


【課題】放電痕の制御性を大幅に向上させた移行型のプラズマアークを用いて磁区細分化処理することにより、鉄損低減効果を大幅に向上させた低鉄損方向性電磁鋼板の製造方法を提案する。
【解決手段】Siを1.5〜7.0mass%含有する二次再結晶焼鈍後の鋼板表面に絶縁被膜を被成した後、移行型プラズマアークを用いて磁区細分化処理を施す方向性電磁鋼板の製造方法において、上記磁区細分化処理を、プラズマトーチ先端から噴出するプラズマガスの周囲を包囲するよう希釈ガスを噴出させるとともに、プラズマガスの流量Gpに対する希釈ガスの流量Gsの比Gs/Gpを0.15〜12の範囲に制御して行うことにより低鉄損の方向性電磁鋼板を得る。 (もっと読む)


【課題】良好な磁気特性を安定して得ることができる方向性電磁鋼板の製造方法を提供する。
【解決手段】所定の組成のスラブを1280℃〜1390℃で加熱して、インヒビターとして機能する物質を固溶させる(ステップS1)。次に、スラブの熱間圧延を行って、鋼帯を得る(ステップS2)。鋼帯の焼鈍により、鋼帯中に一次インヒビターを形成する(ステップS3)。次に、鋼帯の1回以上の冷間圧延を行う(ステップS4)。次に、鋼帯の焼鈍により、脱炭を行い、一次再結晶を生じさせる(ステップS5)。次に、鋼帯に対して、その走行状態下で水素、窒素及びアンモニアの混合ガス中で窒化処理して、鋼帯中に二次インヒビターを形成する(ステップS6)。次に、鋼帯の焼鈍により、二次再結晶を発現させる(ステップS7)。 (もっと読む)


【課題】連続焼鈍炉を用いた比較的低温・短時間の仕上焼鈍で、安定的に二次再結晶を起こさせることが可能な方向性電磁鋼板の有利な製造方法を提案する。
【解決手段】C:0.12mass%以下、Si:2.0〜4.5mass%、Mn:0.005〜0.3mass%、Al:0.005〜0.012mass%、N:0.0030〜0.010mass%、残部がFeおよび不可避的不純物からなる成分組成の鋼スラブを熱間圧延し、中間焼鈍を挟む2回以上の冷間圧延で冷延板とし、その後、連続焼鈍炉で1回以上の仕上焼鈍を施す方向性電磁鋼板の製造方法において、上記中間焼鈍を750〜950℃の温度で行い、冷間圧延における最終冷間圧延の圧下率を30〜80%の範囲とし、連続焼鈍で二次再結晶させることを特徴とする方向性電磁鋼板の製造方法。 (もっと読む)


1 - 20 / 72