説明

Fターム[4K033SA03]の内容

電磁鋼板の製造 (7,545) | 熱処理 (402) | 焼鈍 (396) | 仕上焼鈍 (172)

Fターム[4K033SA03]に分類される特許

1 - 20 / 172


【課題】冷間圧延方向の磁気特性に優れる無方向性電磁鋼板を製造する有利な方法を提案する。
【解決手段】C:0.005mass%以下、Si:2〜7mass%、Mn:0.03〜3mass%、Al:0.01mass%以下、N:0.005mass%以下、S:0.005mass%以下を含有し、さらに、Caを0.0005〜0.01mass%かつSとの原子比(Ca(mass%)/40)/(S(mass%)/32)が0.5〜3.5の範囲で含有し、残部がFeおよび不可避的不純物からなる鋼スラブを熱間圧延し、熱延板焼鈍し、冷間圧延した後、再結晶焼鈍を施して結晶粒径dを70μm以下とした後、圧下率が1〜15%のスキンパス圧延し、歪取焼鈍を施す無方向性電磁鋼板の製造方法。 (もっと読む)


【課題】優れた加工及び磁気特性を有する高透磁率の方向性電磁鋼板の製造方法を提供する。
【解決手段】重量%で、約2.5から約4.5%までの珪素と、約0.1から約1.2%までのクロムと、約0.02から約0.08%までの炭素と、約0.01から約0.05%までのアルミニウムと、約0.1%までのイオウと、約0.14%までのセレンと、約0.03から約0.15%までのマンガンと、約0.02%までの錫と、約1%までの銅と、必要な鉄及び残留要素とのバランスとを有するものであり、少なくとも毎秒30℃の割合で875〜950℃から400℃以下の温度まで冷間圧延される前に焼鈍された後、急冷される。少なくとも80%の最終圧下により1以上の工程で冷延圧下され、焼鈍され、脱炭され、そして少なくとも片面が焼鈍分離剤で被覆される。最終焼鈍は、安定した2次粒成長と、少なくとも1840の796A/mで測定される透磁率とを有する。 (もっと読む)


【課題】レーザーまたは電子ビーム照射を用いて、平坦化焼鈍後に磁区細分化処理を施す方向性電磁鋼板の製造方法において、レーザーまたは電子ビーム照射に伴う絶縁被膜の損傷を回避することで、鋼板の鉄損低減、層間抵抗の確保および鋼板外観の維持を実現する方法を提供する。
【解決手段】仕上焼鈍を、コイルの巻取り径が内径で700mm以上として行い、鋼板の表面にフォルステライト被膜を形成した後、
引き続く平坦化焼鈍処理を施す際に、リン酸塩およびシリカを主体とする絶縁コーティング処理を施すものとし、上記平坦化焼鈍処理の温度を850℃以上で、かつ焼鈍炉内における鋼板に対する付与張力を10MPa以下とし、
その後、上記鋼板の圧延方向と交差する向きにレーザーまたは電子ビームを照射して磁区細分化処理を行う。 (もっと読む)


【課題】圧縮応力に対する磁歪感受性を低減し、もって、変圧器等の鉄心における騒音を効果的に低減することができる、磁歪特性に優れる方向性電磁鋼板と、その鋼板を用いた低騒音の変圧器を提供する。
【解決手段】Si:3.0〜7.0mass%、Mn:0.04〜0.15mass%、Sb:0.01〜0.10mass%およびSn:0.01〜0.20mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、張力付与被膜が被成してなる方向性電磁鋼板であって、ゴス方位{110}<001>粒における圧延方向を回転軸とした結晶方位の平均方位差角δが6°以下であり、かつ、圧延方向に圧縮応力3.92MPaを付加した状態において50Hz、1.7Tで磁化したときの磁歪λp−pが1.7×10−6以下である方向性電磁鋼板。 (もっと読む)


【課題】方向性電磁鋼板をバッチ式の箱型焼鈍炉を用いて仕上焼鈍する際のコイル内温度分布の不均一を改善し、形状不良および鉄損劣化を抑制することができる仕上焼鈍設備と、その設備を用いた仕上焼鈍方法を提案する。
【解決手段】コイル置台上にアップエンドに載置されたコイル内径部に挿入される、上方を閉じた外管とその内部に円筒状の内管を有する2重管構造の冷却管を立設した仕上焼鈍設備を用い、上記2重管構造の冷却管内に冷却ガスを流して外管を冷却しながら仕上焼鈍することで、コイル内周面における、加熱過程での温度上昇を抑制すると共に冷却過程での冷却を促進し、コイル内温度分布の不均一を改善する。 (もっと読む)


【課題】IPMモータのロータ鉄心として用いるときにIPMモータのリラクタンストルクの低下を招くことなく、高強度化を図ることが可能で、平坦度にも優れるロータ鉄心用鋼板を提供する。
【解決手段】C:0.03超〜0.90質量%以下、Si:0〜3.0質量%、Mn:0.05〜2.5質量%、P:0.05質量%以下、S:0.02質量%以下、酸可溶Al:0.005〜3.0質量%かつSi+Al:3.1質量%以下、残部がFe及び不可避的不純物からなる成分組成を有する熱延鋼板を冷延し、その後、200〜500℃の温度域に加熱しつつプレステンパー処理又はテンションアニーリング処理を施すことにより、降伏強度が780N/mm以上であり、磁束密度B8000が1.65T以上である平坦度に優れるロータ鉄心用鋼板を得る。 (もっと読む)


【課題】方向性電磁鋼板の鉄損を十分に低減させるとともに、適正台数の電子銃を使用して高速で電子ビーム照射処理を実施することができる方向性電磁鋼板の製造方法及び製造装置について提供する。
【解決手段】本発明によれば、方向性電磁鋼板をその圧延方向へ進む移送ラインに沿って移送する間に、電子銃から電子ビームを前記圧延方向を横切る向きに照射する走査を、前記圧延方向へ間隔を置いて繰り返し行うに当たり、前記方向性電磁鋼板における前記電子ビーム径:0.25mm以下の下に、前記方向性電磁鋼板の幅をL(m)、前記方向性電磁鋼板の移送速度をV0(m/s)、前記方向性電磁鋼板上での前記電子ビームの走査速度をv(m)、前記電子ビーム走査線の圧延方向間隔をsとしたときに、N ≧ L×V0/((v2−V02)0.5×s)、v≧20 m/sの条件を満たすN台の電子銃を用いて、前記電子ビームの走査を行う。 (もっと読む)


【課題】製品コイルの全長にわたって低鉄損の方向性電磁鋼板を製造する。
【解決手段】mass%で、C:0.001〜0.10%、Si:1.0〜5.0%、Mn:0.01〜0.5%、sol.Al:0.003〜0.050%、N:0.0010〜0.020%、SおよびSeのうちから選ばれる1種または2種:合計0.005〜0.040%を含有する鋼スラブを熱間圧延し、冷間圧延し、一次再結晶焼鈍し、仕上焼鈍する方向性電磁鋼板の製造方法において、上記一次再結晶焼鈍の昇温過程におけるT1(℃):500+2×(NB−NA)とT2(℃):600+2×(NB−NA)との間の昇温速度S1を80℃/sec以上とし、かつ、温度T2〜750℃の間の平均昇温速度S2を、上記S1の0.1〜0.7倍とする。ここで、上記式中の、NAは冷延後の析出N量、NBは一次再結晶焼鈍後の析出N量。 (もっと読む)


【課題】方向性電磁鋼板をインヒビターレス素材を用いて製造する場合に、従来懸念された粒径変動を効果的に抑制して、安定して所望の磁気特性を発現させることができる品質安定性に優れた方向性電磁鋼板の有利な製造方法を提供する。
【解決手段】インヒビターレスの成分系で、Caを3質量ppm以上 15質量ppm以下で含有するスラブを素材として方向性電磁鋼板を製造するに際し、
スラブ成分中のS量を、Ca量に応じて、次式(1)
8+Ca(ppm)×0.7<S(ppm)≦50 (ppm) --- (1)
の関係を満足する範囲に調整する。 (もっと読む)


【課題】仕上焼鈍において発生する形状不良を低減し、製品歩留りを向上させる。
【解決手段】冷間圧延後の方向性電磁鋼板用コイルを一次再結晶焼鈍し、焼鈍分離剤を塗布し、仕上焼鈍する方向性電磁鋼板の製造方法において、上記一次再結晶焼鈍の加熱過程における500〜700℃間を80℃/sec以上で急速加熱すると共に、仕上焼鈍の加熱過程の700〜1000℃間で2〜100時間保持する保定処理を施す、好ましくは、さらに、仕上焼鈍に用いる焼鈍炉のコイル受台上面に、外周側から同心円状にかつコイル受台の半径の20%以上に、断熱材を敷設して仕上焼鈍する方向性電磁鋼板の製造方法。 (もっと読む)


【課題】製品コイル内の鉄損が均一かつ極めて低い極薄方向性電磁鋼板の製造方法を提案する。
【解決手段】mass%で、C:0.04〜0.12%、Si:1.5〜5.0%、Mn:0.01〜1.0%、Ni:0.10〜1.0%、sol.Al:0.010〜0.040%、N:0.004〜0.02%、Cu:0.02〜1.0%、Sb:0.01〜0.10%、SおよびSeのうちから選ばれる1種または2種:合計0.005〜0.05%を含有する鋼スラブを熱間圧延し、冷間圧延して最終板厚0.12〜0.20mmの冷延板とし、一次再結晶焼鈍し、仕上焼鈍する方向性電磁鋼板の製造工程において、上記鋼スラブのsol.Al/Nの値を2.0〜2.8の範囲とし、かつ、仕上焼鈍における二次再結晶前の鋼板を775〜875℃の温度域に40〜200時間保定することを特徴とする方向性電磁鋼板の製造方法を提案する。 (もっと読む)


【課題】製品コイル内の鉄損が均一かつ極めて低い極薄方向性電磁鋼板の製造方法を提案する。
【解決手段】mass%で、C:0.04〜0.12%、Si:1.5〜5.0%、Mn:0.01〜1.0%、sol.Al:0.010〜0.040%、N:0.004〜0.02%、SおよびSeを合計で0.005〜0.05含有する鋼スラブを熱間圧延し、冷間圧延し、一次再結晶焼鈍し、仕上焼鈍する方向性電磁鋼板の製造方法において、前記鋼スラブにおけるsol.AlとNの含有量の比(sol.Al/N)と、二次再結晶焼鈍時の鋼板板厚d(mm)とが、4d+1.52≦sol.Al/N≦4d+2.32の式を満たし、かつ、前記仕上焼鈍の加熱過程で二次再結晶前の鋼板を775〜875℃の温度に40〜200時間保持した後、875〜1050℃の温度域を昇温速度10〜60℃/hrで加熱し、二次再結晶と純化処理を施す。 (もっと読む)


【課題】本発明は、高効率モータ鉄心に使用することが好適な、磁気特性と生産性に優れた無方向性電磁鋼板を提供することを主目的とする。
【解決手段】本発明は、質量%で、Si:2.0%以上3.5%以下、sol.Al:0.1%以上2.5%以下、Mn:0.05%以上2.5%以下、P:0.03%以上0.10%以下、S:0.0010%以上0.0050%以下、C:0.0050%以下、As:0.0050%以下、Nb:0.0030%以下、Ti:0.0030%以下、V:0.0030%以下、Zr:0.0030%以下およびN:0.0050%以下を含有し、残部がFeおよび不純物からなるとともに、Si+sol.Al+0.5×Mn≧3.3およびS+As+Nb+Ti+V+Zr+N≦0.018を満足する化学組成を有し、平均結晶粒径が60μm以上180μm以下である鋼組織を有し、板厚が0.10mm以上0.35mm以下であることを特徴とする無方向性電磁鋼板を提供する。 (もっと読む)


【課題】本発明は、時効熱処理によって強度上昇を図ることができ、高周波での鉄損が低く、かつ製造性に優れた時効熱処理用無方向性電磁鋼板ならびに無方向性電磁鋼板およびその製造方法を提供することを主目的とする。
【解決手段】本発明は、質量%で、C:0.02%以下、Si:0%以上1%以下、Mn:1%以下、P:0.2%以下、S:0.03%以下、Al:2%以上4%以下、Ni:0.1以上2%以下およびCu:1%超3%以下を含有し、残部がFeおよび不純物からなる鋼組成を有することを特徴とする時効熱処理用無方向性電磁鋼板を提供することにより、上記目的を達成する。 (もっと読む)


【課題】中間焼鈍において、従来技術よりも効率よく脱炭することができ、薄物でも安定して低鉄損が得られる方向性電磁鋼板の有利な製造方法を提案する。
【解決手段】C:0.02〜0.15%、Si:2.0〜7.0%、Mn:0.005〜0.3%、酸可溶性Al:0.01〜0.05%、N:0.002〜0.012%、SおよびSeのうちから選ばれる1種または2種を合計で0.05%以下を含有する鋼スラブを熱間圧延し、1回以上の中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚とした後、一次再結晶焼鈍を施し、その後、仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、上記いずれかの中間焼鈍において、鋼板表面に鉄系酸化物層を形成し、必要に応じて還元して純鉄層を形成した後、脱炭することを特徴とする方向性電磁鋼板の有利な製造方法。 (もっと読む)


【課題】冷間圧延における脆性を懸念する必要がなくかつ磁気特性にも優れる無方向性電磁鋼板の有利な製造方法を提案する。
【解決手段】C:0.01mass%以下、Si:7mass%以下、Mn:0.03〜3mass%、S:0.0050mass%以下、Al:3mass%以下、N:0.0050mass%以下、残部がFeおよび不可避的不純物からなる鋼スラブを熱間圧延し、熱延板焼鈍し、冷間圧延し、仕上焼鈍する一連の工程からなる無方向性電磁鋼板の製造方法において、上記熱延板焼鈍後の結晶粒径dが下記式;50≦d≦135−(0.7×ρ)(ここで、d:平均結晶粒径(μm)、ρ:鋼の固有抵抗ρ(μΩ・cm))を満たすよう制御し、冷間圧延後の再結晶焼鈍における740℃までの平均昇温速度を100℃/sec以上とする無方向性電磁鋼板の製造方法。 (もっと読む)


【課題】製品コイル全長に亘って二次再結晶粒を細粒化し、低鉄損化することができる方向性電磁鋼板の製造方法を提案する。
【解決手段】C:0.001〜0.20%、Si:1.0〜5.0%、Mn:0.03〜1.0%、SおよびSeの1種または2種の合計:0.005〜0.040%、sol.Al:0.003〜0.050%、N:0.0010〜0.020%を含有する鋼スラブを熱間圧延し、冷間圧延を施して最終板厚とし、一次再結晶焼鈍し、その後、MgOを主成分とする焼鈍分離剤を塗布して最終仕上焼鈍を施す方向性電磁鋼板の製造方法において、上記一次再結晶焼鈍の昇温過程における300〜600℃間の昇温速度Sを100℃/s以上、600〜700℃間の昇温速度Sを30〜(0.5×S)℃/sの範囲とし、好ましくは300〜700℃における雰囲気の酸化ポテンシャルPH2O/PH2を0.05以下とする。 (もっと読む)


【課題】磁気特性に優れる方向性電磁鋼板を生産性よく製造する有利な方法を提案する。
【解決手段】mass%で、C:0.020〜0.15%、Si:2.5〜7.0%、Mn:0.005〜0.3%、sol.Al:0.01〜0.05%、N:0.002〜0.012%、SおよびSeのうちの1種または2種:合計で0.05%以下、Sn:0.01〜0.20%、Sb:(0.2×Sn)%以上0.10%以下、Ni:{0.7×(Sn+Sb)}%以上1.0%以下を含有する鋼スラブを、熱間圧延し、中間焼鈍を挟む2回以上の冷間圧延し、一次再結晶焼鈍し、仕上焼鈍する方向性電磁鋼板の製造方法において、上記鋼スラブのSn,SbおよびNiの含有量に応じて、熱間圧延における1150℃以下での圧下率Rおよび中間焼鈍における最高到達温度T(℃)を適正範囲に制御することを特徴とする方向性電磁鋼板の製造方法。 (もっと読む)


【課題】積み変圧器を作製した場合にあって、特に、磁束密度Bが1.93T以上の方向性電磁鋼板を用いて変圧器を作製したときに、そのコーナー部分など、磁束が圧延方向からずれて曲がる部位があっても、より効果的に鉄損劣化を抑えることができる方向性電磁鋼板を得る。
【解決手段】一次再結晶焼鈍に先立ち、鋼板の表面に電子線を照射することにより、鋼板の表面を算術平均粗さRaで0.15μm以下の平滑面とする。 (もっと読む)


【課題】鉄心にギャップを設ける以外の方法で、偏磁が生じる用途で使われる場合にも、優れた磁気特性を有する方向性電磁鋼板を提案する。
【解決手段】電子ビーム照射により、板幅方向と30度以内をなす角度で線状に、照射列の圧延方向の列間隔を2〜10mmとして、以下の式(1)にて定義される単位面積あたりの照射エネルギー量E(mJ/mm2)を、磁束密度Bが1.90T以上でかつ磁束密度B0.5が1.60T以下を満足するように、20〜220 mJ/mm2の範囲で歪を導入する。
E(mJ/mm2)=電子ビーム加速電圧(kV)×ビーム電流値(mA)/ (ビーム走査速度(m/s)×ビーム径(mm)) …(1) (もっと読む)


1 - 20 / 172