説明

Fターム[4K037FB08]の内容

薄鋼板の熱処理 (55,812) | 熱間圧延 (632) | 熱延スケジュールを規定したもの (187) | 仕上圧延率、仕上圧延パススケジュール (110) | 仕上後段パスあるいは最終パス圧下率 (55)

Fターム[4K037FB08]に分類される特許

1 - 20 / 55


【課題】深絞り性およびコイル内材質均一性に優れた高強度冷延鋼板およびその製造方法を提案する。
【解決手段】成分組成は、質量%でC:0.010〜0.060%、Si:0.5%超1.5%以下、Mn:1.0〜3.0%、P:0.005〜0.100%、S:0.010%以下、sol.Al:0.005〜0.500%、N:0.0100%以下、Nb:0.010〜0.100%、Ti:0.015〜0.150%を含有し、かつ(Nb/93)/(C/12)<0.20、0.005≦C*≦0.025、(Nb/93+Ti*/48)/(C/12)≧0.150(C*=C-(12/93)Nb-(12/48)Ti*、Ti*=Ti-(48/14)N-(48/32)Sである)を満足し、残部が鉄および不可避的不純物からなる。組織は、面積率で70%以上のフェライト相と、3%以上のマルテンサイト相を有する。さらに、引張強さが440MPa以上、平均r値が1.20以上である。 (もっと読む)


【課題】深絞り性に優れた冷延鋼板を、高効率に生産する
【解決手段】質量%で、C:0.010%未満、Si:1.5%以下、Mn:2.0%以下、P:0.10%以下、S:0.010%以下、Al:0.0005〜0.10%、N:0.0060%以下、Ti:0.001〜0.10%およびNb:0.001〜0.10%を含有するとともに、(C/12+N/14+S/32)/(Ti/48+Nb/93)が1.4以下であり、残部Feおよび不純物からなる鋼塊または鋼片に、(Ar点−30℃)以上で圧延を完了する熱間圧延を施し、熱間圧延完了後0.5秒間以内に400℃/秒以上の平均冷却速度で750℃まで冷却し、400℃以上640℃未満で巻き取った後、酸洗し、圧下率60〜95%で冷間圧延し、750〜880℃で焼鈍する。 (もっと読む)


【課題】延性、加工硬化性、伸びフランジ性に優れた高張力冷延鋼板を製造する。
【解決手段】質量%で、C:0.020%超0.30%未満、Si:0.10%超3.00%以下、Mn:1.00%超3.50%以下、P:0.10%以下、S:0.010%以下、sol.Al:2.00%以下およびN:0.010%以下である化学組成を有するスラブに、最終1パスの圧下量が15%超でAr3点以上の温度域で圧延を完了する熱間圧延を施し、圧延完了後0.4秒間以内に780℃以下の温度域まで冷却し、400℃超の温度域で巻取り、得られた熱延鋼板に冷間圧延を施し、次いで(Ac3点−40℃)以上の温度域で均熱処理を施した後、500℃以下300℃以上の温度域まで冷却し、該温度域で30秒間以上保持する焼鈍を行って、主相が低温変態生成相、第二相に残留オーステナイトを含む金属組織の冷延鋼板を製造する。 (もっと読む)


【課題】延性、加工硬化性、伸びフランジ性に優れた高張力冷延鋼板を製造する。
【解決手段】質量%で、C:0.020%超0.30%未満、Si:0.10%超3.00%以下、Mn:1.00%超3.50%以下、P:0.10%以下、S:0.010%以下、sol.Al:2.00%以下およびN:0.010%以下である化学組成を有するスラブに、Ar3点以上の温度域で圧延を完了する熱間圧延を施し、圧延完了後0.4秒間以内に780℃以下の温度域まで冷却し、400℃未満の温度域で巻取り、得られた熱延鋼板に300℃以上の温度域に加熱する熱延板焼鈍を施した後、冷間圧延し、次いで(Ac3点−40℃)以上の温度域で均熱処理を施した後、500℃以下300℃以上の温度域まで冷却し、該温度域で30秒間以上保持する焼鈍を行って、主相が低温変態生成相で第二相に残留オーステナイトを含む金属組織を持つ冷延鋼板を製造する。 (もっと読む)


【課題】延性、加工硬化性、伸びフランジ性に優れた高張力冷延鋼板を実現する。
【解決手段】質量%で、C:0.020%超0.30%未満、Si:0.10%超3.00%以下、Mn:1.00%超3.50%以下を含有し、場合によりさらに、Ti:0.050%未満、Nb:0.050%未満、V:0.50%以下、Cr:1.0%以下、Mo:0.50%以下、B:0.010%以下、Ca:0.010%以下、Mg:0.010%以下、REM:0.050%以下およびBi:0.050%以下から選択される1種または2種以上を含有し、主相が低温変態生成相で、第二相に残留オーステナイトを含む金属組織を有する冷延鋼板。残留オーステナイトは全組織に対する体積率が4.0%超25.0%未満、平均粒径が0.80μm未満であり、粒径が1.2μm以上である残留オーステナイト粒の数密度が3.0×10−2個/μm2以下である。 (もっと読む)


【課題】延性、加工硬化性、伸びフランジ性に優れた高張力冷延鋼板を製造する。
【解決手段】質量%で、C:0.020%超0.30%未満、Si:0.10%超3.00%以下、Mn:1.00%超3.50%以下、P:0.10%以下、S:0.010%以下、sol.Al:2.00%以下およびN:0.010%以下である化学組成を有するスラブに、Ar3点以上の温度域で圧延を完了する熱間圧延を施し、圧延完了後0.4秒間以内に780℃以下の温度域まで冷却し、400℃未満の温度域で巻取って得た熱延鋼板に300℃以上の温度域に加熱する熱延板焼鈍を施した後、冷間圧延し、次いで(Ac3点−40℃)以上の温度域で均熱処理した後、500℃以下300℃以上の温度域まで冷却し(その際、好ましくは10.0℃/s未満の冷却速度で50℃以上冷却し)、該温度域で30秒間以上保持する焼鈍を行って、主相が低温変態生成相で第二相に残留オーステナイトおよびポリゴナルフェライトを含む金属組織を持つ冷延鋼板を製造する。 (もっと読む)


【課題】延性、加工硬化性、伸びフランジ性に優れた高張力冷延鋼板の実現。
【解決手段】質量%で、C:0.020%超0.30%未満、Si:0.10%超3.00%以下、Mn:1.00%超3.50%以下、場合によりさらに適量のTi、Nb、V、Cr、Mo、B、Ca、Mg、REMおよびBiの1種又は2種以上を含有し、主相が低温変態生成相で第二相に残留オーステナイトおよびポリゴナルフェライトを含む金属組織を備え、前記残留オーステナイトは体積率が4.0%超25.0%未満、平均粒径0.80μm未満であり、前記残留オーステナイトの内、粒径1.2μm以上の残留オーステナイト粒の数密度が3.0×10−2個/μm2以下、前記ポリゴナルフェライトは体積率が2.0%超27.0%未満、平均粒径5.0μm未満である。 (もっと読む)


【課題】延性、加工硬化性、伸びフランジ性に優れた高張力冷延鋼板を実現する。
【解決手段】質量%で、C:0.020%超0.30%未満、Si:0.10%超3.00%以下、Mn:1.00%超3.50%以下を含有し、場合によりさらに、Ti、Nb、V、Cr、Mo、B、Ca、Mg、REMおよびBiから選択される1種または2種以上を含有し、主相が低温変態生成相で、第二相に残留オーステナイトを含む金属組織とを有する冷延鋼板。前記残留オーステナイトは全組織に対する体積率が4.0%超25.0%未満、平均粒径が0.80μm未満であり、粒径1.2μm以上の残留オーステナイト粒の数密度NRが3.0×10−2個/μm2以下、方位差15゜以上の粒界で囲まれたbcc構造を有する粒およびbct構造を有する粒の平均粒径が7.0μm以下である。 (もっと読む)


【課題】延性、加工硬化性、伸びフランジ性に優れた高張力冷延鋼板を製造する。
【解決手段】質量%で、C:0.020%超0.30%未満、Si:0.10%超3.00%以下、Mn:1.00%超3.50%以下、P:0.10%以下、S:0.010%以下、sol.Al:2.00%以下およびN:0.010%以下である化学組成を有するスラブに、最終1パスの圧下量が15%超でAr3点以上の温度域で圧延を完了する熱間圧延を施し、圧延完了後0.4秒間以内に780℃以下の温度域まで冷却し、400℃超の温度域で巻取り、得られた熱延鋼板に冷間圧延を施し、次いで(Ac3点−40℃)以上の温度域で均熱処理を施し、10.0℃/s未満の冷却速度で50℃以上冷却してから、500℃以下300℃以上の温度域まで冷却し、該温度域で30秒間以上保持する焼鈍を行って、主相が低温変態生成相、第二相に残留オーステナイトおよびポリゴナルフェライトを含む金属組織の冷延鋼板を製造する。 (もっと読む)


【課題】高強度と良好な延性及び伸びフランジ性とを併せ持つ熱延鋼板を製造する。
【解決手段】質量%で、C:0.08%超0.30%未満、Mn:1.0〜4.0%、Si:0.10%以上3.0%未満、sol.Al:0.01〜3.0%、但し、Siおよびsol.Alの合計量=0.8〜3.0%、P:0.05%以下、S:0.01%以下およびN:0.01%以下を含有し、残部がFeおよび不純物からなる化学組成を有するスラブに、最終圧延パスにおける圧下率を5%以上50%以下として860℃以上1050℃以下の温度域で圧延を完了する多パス熱間圧延を施して1.2mm超6mm以下の板厚に仕上げた後、熱間圧延完了後1秒間以内に720℃以下の温度域まで冷却し、500℃超720℃以下の温度域に1秒間以上20秒間以下の滞在時間で滞在させた後、350℃以上500℃以下の温度域で巻き取る。 (もっと読む)


【課題】高強度と良好な延性及び伸びフランジ性とを併せ持つ熱延鋼板の提供。
【解決手段】質量%で、C:0.08%超0.30%未満、Mn:1.0〜4.0%、Si:0.10%以上3.0%未満、sol.Al:0.01〜3.0%、但し、Siおよびsol.Alの合計量=0.8〜3.0%、P:0.05%以下、S:0.01%以下およびN:0.01%以下を含有し、残部がFeおよび不純物からなる化学組成を有し、鋼板表面から板厚の1/4深さ位置における鋼組織が、面積%で、ベイナイト:40%以上、ポリゴナルフェライト:2.0%以上50%未満および残留オーステナイト:3%以上を含有し、残部が15.0%以下であって、かつ残留オースナイトを除く鋼組織において15°以上の結晶方位差を有する粒界で囲まれる粒の平均粒径が15μm以下であり、板厚が1.2mm超6mm以下である。 (もっと読む)


【課題】1470MPa以上の強度を有するとともに、加工部の耐遅れ破壊特性と靭性に優れた部品、特に自動車用部品を、ホットスタンプ技術で製造する。
【解決手段】質量%で、S:0.001〜0.005%、REM:0.005〜0.03%(又は、Mg:0.005〜0.03%)、及び、O:0.003〜0.007%を含むホットスタンプ用鋼板において、S、O、及び、REMの2種以上を含む直径0.1μm以下の球状介在物が分散していることを特徴とする熱間複合成形性及び打抜き部の耐遅れ破壊特性に優れたホットスタンプ用鋼板。 (もっと読む)


【課題】局部変形能に優れ、成形性の方位依存性が少なく、延性に優れた熱延鋼板を提供する。
【解決手段】質量%で、C:0.02〜0.5%、Si:0.001〜4.0%、Mn:0.001〜4.0%、Al+Si≦4.0%以下を含有し、集合組織が、少なくとも鋼板の表面から5/8〜3/8の板厚における板面の{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値が4.0未満、かつ{332}<113>の結晶方位のX線ランダム強度比が5.0以下、さらに圧延方向と直角方向のr(rC)値が0.70以上、圧延方向と30°(r30)のr値が1.10以下であり、面積率で残留オーステナイトを5〜30%、フェライトを20〜50%、ベイナイトを10〜60%含有し、さらにパーライト、マルテンサイトがそれぞれ20%以下とする。 (もっと読む)


【課題】引張強さが440MPa以上、平均r値が1.20以上で焼付硬化量が40MPa以上の深絞り性と焼付硬化性に優れる高強度冷延鋼板を提供する。
【解決手段】mass%で、C:0.010〜0.06%、Si:0.5%超1.5%以下、Mn:1.0〜3.0%、Nb:0.010〜0.090%、Ti:0.015〜0.15%を含有し、かつ(Nb/93)/(C/12)<0.20および固溶C量が0.005〜0.025%を満たす成分組成の鋼素材を熱間圧延し、冷間圧延した後、700〜800℃の温度を平均昇温速度3℃/s未満として800〜900℃の温度に加熱し、均熱後、上記均熱温度から500℃以下の冷却停止温度まで5℃/s以上で冷却する焼鈍を施し、面積率で70%以上のフェライト相と3%以上のマルテンサイト相を含む組織からなる冷延鋼板を得る。 (もっと読む)


【課題】スケール層を有する熱延鋼板に電着焼付塗装を施した場合であっても、スケールと地鉄との密着性を損なうことが無く、且つ、良好な化成処理皮膜を形成することが可能な、塗装耐食性と疲労特性に優れた熱延鋼板およびその製造方法を提供する。
【解決手段】スケール層中のマグネタイトの体積分率を60%以上、かつ、前記マグネタイトの平均結晶粒径を3μm以下とし、スケール/地鉄界面の粗さを平均粗さRaで1.5μm以下とする。 (もっと読む)


【課題】370〜490MPa級の引張強度で、バーリング性に優れた焼付け硬化型熱延鋼板及びその製造方法を提供する。
【解決手段】所定範囲の成分を含み、数式(1)および数式(2)を満足し、残部がFe及び不可避的不純物からなる鋼板であって、そのミクロ組織の90面積%以上が初析フェライトで他が低温変態相あり、平均結晶粒径が5μm〜12μmであるとともに、アスペクト比が4.5以上のセメンタイトの粒界占有率が25%以下、上記ミクロ組織の結晶粒内における固溶C濃度が0.002〜0.02%であり、TiCからなる析出物の平均粒径が1.5〜3nmであるとともに、その密度が1×1016〜5×1017個/cm3で、平均転位密度が、109〜1011cm-2である。
(もっと読む)


【課題】バーリング性に優れる高強度熱延鋼板を提供する。
【解決手段】Nb含有量を[Nb]、Ti含有量を[Ti]、N含有量を[N]、S含有量を[S]、C含有量を[C]、B含有量を[B]としたとき、以下の式を満たし、0.004≦[C]+12/11[B]−12/48×([Ti]+48/93[Nb]−48/14[N]−48/32[S])、[C]−12/48×([Ti]+48/93[Nb]−48/14[N]−48/32[S])≦0.012、固溶Cと固溶Bの合計の粒界個数密度が4.5個/nm2超12個/nm2以下であり、さらに鋼板中の粒界に析出しているセメンタイト粒径が2μm以下であり、板厚中心での平均結晶粒径が9μm以下であり、且つ板厚中心での{211}ランダム強度比が2以下であり、結晶粒内におけるTiCを含む析出物の平均粒径が3nm以下であるとともに、その密度が1×1016個/cm3以上とする。 (もっと読む)


【課題】バーリング性に優れる高強度熱延鋼板を提供する。
【解決手段】Nb含有量を[Nb]、Ti含有量を[Ti]、N含有量を[N]、S含有量を[S]、C含有量を[C]、B含有量を[B]としたとき、以下の式を満たし、0.012<[C]+12/11[B]−12/48×([Ti]+48/93[Nb]−48/14[N]−48/32[S])、[C]−12/48×([Ti]+48/93[Nb]−48/14[N]−48/32[S])≦0.03、固溶Cと固溶Bの合計の粒界個数密度が4.5個/nm2超12個/nm2以下であり、さらに鋼板中の粒界に析出しているセメンタイト粒径が2μm以下であり、板厚中心での平均結晶粒径が9μm以下であり、且つ板厚中心での{211}ランダム強度比が2以下であり、結晶粒内におけるTiCを含む析出物の平均粒径が3nm以下であるとともに、その密度が1×1016個/cm3以上とする。 (もっと読む)


【課題】疲労特性と黒皮上への化成処理性に優れた高強度の熱延鋼板を提供する。
【解決手段】熱延後の鋼板表面から厚さ方向に10〜30μmの範囲において、グロー放電発光分光分析にて検出されるCrの濃度の平均値が母材のCr濃度の1.2倍以上であり、かつ同範囲のフェライト相の平均結晶粒径が板厚の1/4位置におけるフェライト相の平均結晶粒径の1.2倍以上であることを特徴とする熱延鋼板であって、所定の化学成分を有する鋼片を1250℃以下に加熱し、780〜860℃で終了する仕上げ圧延を行うに際し、連続圧延の最終圧延パスの圧延率を15%以下とし、その後、10℃/s以上の平均冷却速度で600〜720℃まで冷却し、4〜14秒間の空冷を行い、更に20℃/s以上の平均冷却速度で350〜550℃まで冷却して巻き取ることによって製造する。 (もっと読む)


【課題】深絞り性に優れた冷延鋼板を生産性よく工業的に容易な方法で製造する。
【解決手段】質量%で、C:0.010%未満、Si:1.5%以下、Mn:2.0%以下、P:0.10%以下、S:0.010%以下、Al:0.0005〜0.10%、N:0.0060%以下、Ti:0.001〜0.10%およびNb:0.001〜0.10%を含有し、(C/12+N/14+S/32)/(Ti/48+Nb/93)≦1.4を満足する化学組成を有する鋼塊または鋼片に、最終パスの1つ前および2つ前の2パスの合計圧下率を45%未満かつ最終パスの圧下率を25%超とし、(Ar点−30℃)以上かつ880℃以上で圧延を完了する多パスの熱間圧延を施し、前記熱間圧延完了後0.5秒間以内に400℃/秒以上の平均冷却速度で820℃まで冷却し、400℃以上700℃未満の温度域で巻き取って熱延鋼板とし、この熱延鋼板に酸洗後、圧下率:60〜95%の冷間圧延を施し、得られた冷延鋼板に700〜910℃の温度域で焼鈍を施す。 (もっと読む)


1 - 20 / 55