説明

Fターム[4K037FE02]の内容

薄鋼板の熱処理 (55,812) | 熱延板の巻取り温度 (2,921) | 550℃〜650℃ (1,003)

Fターム[4K037FE02]に分類される特許

1 - 20 / 1,003









【課題】高強度(540MPa以上の引張強度TS)を有し、且つ表面外観に優れた溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板を得ることができる熱延鋼板を提供する。
【解決手段】C:0.04〜0.20質量%、Si:0.7〜2.3質量%、Mn:0.8〜2.8質量%、P:0.1質量%以下、S:0.01質量%以下、Al:0.1質量%以下、N:0.008質量%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、Si、Mn、Feの中から選ばれる1種以上の元素を含有する内部酸化物が地鉄の粒界および粒内に存在し、このうち地鉄の粒界の内部酸化物は、地鉄表面から5μm以内に存在し且つ鋼板幅方向における内部酸化物の形成深さの差が2μm以内である。 (もっと読む)


【課題】引張強度で1180MPa以上の高強度で、遅れ破壊特性が良好な溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板を提供する。
【解決手段】Bの多量添加により高強度を確保する。具体的には、鋼板は、質量%で、C:0.11〜0.20%、Si:0.001〜0.35%、Mn:2.0〜3.0%、P:0.1%以下、S:0.01%以下、sol. Al:0.001〜1.5%、Ti:0.001〜0.30%、N:0.02%以下、B:0.0021〜0.0080%以下を含有し、場合により適量のNb、V、Cr、Mo、Cu、Ni、Ca,REMおよびBiの1種または2種以上をさらに含有し、かつ下記(1)式を満足する化学組成と、残留オーステナイトが7体積%以下の金属組織とを有する。
15×sol. Al+100×Ti≧1.5 ・・・ (1) (もっと読む)


【課題】実際のプレス成形において良好な成形性を得ることができる、曲げ加工性に優れた冷延鋼板を提供する。
【解決手段】質量%で、C:0.005%以下、Si:0.1%以下、Mn:0.5%以下、P:0.03%以下、S:0.02%以下、N:0.005%以下およびAl:0.1%以下を含有し、さらにTi:0.020%以上0.1%以下を含有し、残部はFeおよび不可避不純物の組成にすると共に、TiNの大きさを0.5ミクロン以下、Ti硫化物および/またはTi炭硫化物の大きさを0.5ミクロン以下、フェライト粒径を30ミクロン以下とし、さらに(111)//NDのX線ランダム強度比を3以上、(100)//NDのX線ランダム強度比を1以下とする。 (もっと読む)


【課題】板厚が1.6 mm以下の薄鋼板でも、引張強度が1180MPa以上と高く、かつ圧延直角方向のヤング率が230GPa以上を満足する剛性に優れた高強度薄鋼板を提供する。
【解決手段】質量%で、C:0.12〜0.20%、Si:0.5〜1.5%、Mn:1.0〜3.0%、P:0.05%以下、S:0.01%以下、Al:0.5%以下、N:0.01%以下およびTi:0.02〜0.20%を含有し、かつ次式(1),(2)に示す関係を満足し、残部はFeおよび不可避的不純物からなる組成とし、面積率で、フェライト相:50%以上、マルテンサイト相:35〜45%で、かつフェライト相とマルテンサイト相の合計が95%以上であり、フェライトの平均粒径が4.0μm以下、マルテンサイトの平均粒径が3.0μm以下である組織とし、さらに圧延直角方向の引張強さ(TS)が1180MPa以上、ヤング率が230 GPa以上で、引張強さ(TS)と全伸び(EL)との積で表わされる強度−伸びバランス(TS×EL)が15000MPa・%以上とする。
0.11≦[%C]−(12/47.9)×[%Ti*]≦0.15 --- (1)
ここで、Ti*=[%Ti]−(47.9/14)×[%N]−(47.9/32.1)×[%S] --- (2)
[%M]はM元素の含有量(質量%) (もっと読む)


【課題】高強度と良好な加工性(伸びフランジ性、曲げ加工性)を兼ね備え、しかも引張強さが980MPa以上である強度と加工性の均一性に優れた高張力熱延鋼板およびその製造方法を提供する。
【解決手段】質量%で、C :0.05%超0.13%以下、Si:0.3%以下、Mn:0.5%以上2.0%以下、P :0.025%以下、S :0.005%以下、N :0.0060%以下、Al:0.1%以下、Ti:0.07%以上0.18%以下、V :0.13%超0.30%以下を、TiおよびVが0.25 < Ti+V ≦ 0.45(Ti、V:各元素の含有量(質量%))を満足するように含有し、且つ、固溶V:0.05%以上0.15%未満であり、残部がFeおよび不可避的不純物からなる組成と、フェライト相の組織全体に対する面積率が95%以上であるマトリックスと、TiおよびVを含み平均粒子径が10nm未満である微細炭化物が分散析出し、該微細炭化物の組織全体に対する体積比が0.0050以上であり、Tiを含み粒子径が30nm以上である炭化物の全炭化物総数に占める個数の割合が10%未満である組織とを有する熱延鋼板とする。 (もっと読む)


【課題】深絞り性に優れた冷延鋼板を、高効率に生産する
【解決手段】質量%で、C:0.010%未満、Si:1.5%以下、Mn:2.0%以下、P:0.10%以下、S:0.010%以下、Al:0.0005〜0.10%、N:0.0060%以下、Ti:0.001〜0.10%およびNb:0.001〜0.10%を含有するとともに、(C/12+N/14+S/32)/(Ti/48+Nb/93)が1.4以下であり、残部Feおよび不純物からなる鋼塊または鋼片に、(Ar点−30℃)以上で圧延を完了する熱間圧延を施し、熱間圧延完了後0.5秒間以内に400℃/秒以上の平均冷却速度で750℃まで冷却し、400℃以上640℃未満で巻き取った後、酸洗し、圧下率60〜95%で冷間圧延し、750〜880℃で焼鈍する。 (もっと読む)


【課題】深絞り性およびコイル内材質均一性に優れた高強度冷延鋼板およびその製造方法を提案する。
【解決手段】成分組成は、質量%でC:0.010〜0.060%、Si:0.5%超1.5%以下、Mn:1.0〜3.0%、P:0.005〜0.100%、S:0.010%以下、sol.Al:0.005〜0.500%、N:0.0100%以下、Nb:0.010〜0.100%、Ti:0.015〜0.150%を含有し、かつ(Nb/93)/(C/12)<0.20、0.005≦C*≦0.025、(Nb/93+Ti*/48)/(C/12)≧0.150(C*=C-(12/93)Nb-(12/48)Ti*、Ti*=Ti-(48/14)N-(48/32)Sである)を満足し、残部が鉄および不可避的不純物からなる。組織は、面積率で70%以上のフェライト相と、3%以上のマルテンサイト相を有する。さらに、引張強さが440MPa以上、平均r値が1.20以上である。 (もっと読む)


【課題】高強度と良好な加工性(伸びフランジ性)を兼ね備え、しかも材質均一性に優れた高張力熱延鋼板およびその製造方法を提供する。
【解決手段】質量%で、C :0.03%以上0.07%未満、Si:0.3%以下、Mn:0.5%以上2.0%以下、P :0.025%以下、S :0.005%以下、N :0.0060%以下、Al:0.1%以下、Ti:0.07%以上0.11%以下、V :0.08%以上0.15%未満を、TiおよびVが0.18 ≦ Ti+V ≦ 0.24(Ti、V:各元素の含有量(質量%))を満足するように含有し、残部がFeおよび不可避的不純物からなる組成と、フェライト相の組織全体に対する面積率が95%以上であるマトリックスと、TiおよびVを含み平均粒子径が10nm未満である微細炭化物が分散析出し、該微細炭化物の組織全体に対する体積比が0.0020以上である組織とを有する引張強さが780MPa以上の熱延鋼板とする。 (もっと読む)


【課題】フランジ加工性に優れた高強度缶用鋼板およびその製造方法を提供する。
【解決手段】C:0.020%〜0.080%、Si:0.003%〜0.100%、Mn:0.10%〜0.80%、P:0.001%〜0.100%、Al:0.005%〜0.100%、N:0.0050%〜0.0200%、B:0.0001%〜0.0020%、S(下記)を含有し、残部はFeおよび不可避的不純物である。圧延直角方向の引張強度が520MPa以上、破断伸びが7%以上である。B:0.0001%以上0.0006%以下では、Sは0.002%以上(0.02-[{1-(B-0.0006)2/(2.5×10-7)}×10-4]0.5)%以下、B:0.0006%超え0.0010%以下では、Sは0.002%以上0.010%以下、B:0.0010%超え0.0020%以下では、Sは0.002%以上(−8×B+0.018)%以下 (もっと読む)


【課題】Siを0.6%以上含有しても良好な化成処理性を有する高Si冷延鋼板の製造方法を提供する。
【解決手段】質量%で、C:0.05〜0.30%、Si:0.6〜3.0%、Mn:1.0〜3.0%、P:0.1%以下、S:0.05%以下、Al:0.01〜1.00%、N:0.01%以下を含有し、残部がFeおよび不可避的不純物からなる鋼を熱間圧延し、形成される内部酸化層の厚さを2μm以下とした後、冷間圧延し、次いで、Niを40〜2000mg/m被覆する処理を施し、その後、空気比:0.95以上の直火バーナを用いて、少なくとも鋼板温度:550℃から鋼板温度:650℃まで鋼板を昇温し、露点:−25℃以下、雰囲気:1〜10体積%H+残部Nで均熱する焼鈍を行う。 (もっと読む)


【課題】優れた強度と加工性(特に伸びフランジ性)を兼ね備えた高強度熱延鋼板およびその製造方法を提供する。
【解決手段】質量%で、C :0.035%超0.07%以下、Si:0.3%以下、Mn:0.35%超0.7%以下、P :0.03%以下、S :0.03%以下、Al:0.1%以下、N :0.01%以下、Ti:0.135%以上0.235%以下を、C、S、N、およびTiが((Ti−(48/14)N−(48/32)S)/48)/(C/12) < 1.0(C、S、N、Ti:各元素の含有量(質量%))を満足するように含有し、残部がFeおよび不可避的不純物からなる組成と、面積率が95%超のフェライト相を含むマトリックスと、前記フェライト相の結晶粒内に平均粒子径が10nm未満のTi炭化物が微細析出した組織とすることで、引張強さが780MPa以上であり加工性に優れた高強度熱延鋼板とする。 (もっと読む)


【課題】板厚が1.6 mm以下の薄鋼板でも、圧延直角方向のヤング率が230GPa以上で、しかもプレス成形後に軟窒化処理を実施した後の平均ヤング率が220GPa以上を満足する、剛性に優れた薄鋼板を提供する。
【解決手段】質量%で、C:0.008%以下、Si:0.5〜1.0%、Mn:1.0〜3.0%、P:0.05%以下、S:0.01%以下、Al:0.5%以下、N:0.01%以下およびTi:0.02〜0.10%を含有し、かつ次式(1)で定義される固溶Ti濃度Ti*が−0.01〜0.05%の範囲を満たし、残部はFeおよび不可避的不純物からなる組成とし、面積率で、フェライト相:90%以上、マルテンサイト相:10%以下(但し、0%を含む)の組織とし、さらに圧延直角方向のヤング率が230 GPa以上で、窒化処理を施した後の鋼板表層の硬度がHv300以下で、かつ次式(2)で定義される平均ヤング率EAVE後を220 GPa以上とする。
Ti*=[%Ti]−(47.9/14)×[%N]−(47.9/32.1)×[%S]−(47.9/12)×[%C] --- (1)
AVE後=(EL後+2ED後+EC後)/4 --- (2) (もっと読む)


【課題】板厚が2.0mm以下で強度と加工性のバランスに優れ、かつ圧延直角方向のヤング率が230GPa以上、圧延直角方向と45°方向のヤング率が215GPa以上の剛性の高い薄鋼板を提供する。
【解決手段】質量%でC:0.005〜0.04%、Si:0.01〜1.5%、Mn:1.0〜3.5%、Ti:0.02〜0.20%、Nb:0.01〜0.20%、P:0.1%以下、S:0.01%以下、Al:1.0%以下およびN:0.01%以下を含有し、かつ次式(1)で規定されるC*が−0.03以上−0.0020以下の範囲を満足し、残部はFeおよび不可避的不純物の組成からなる鋼スラブを熱間圧延し、巻き取った後、500%以上の圧下率にて冷間圧延を行って再結晶のための連続焼鈍を行う。C*=[%C]−(12/48)〔[%Ti]−(48/14)[%N]−(48/32)[%S]〕−(12/93)[%Nb]---(1) (もっと読む)


1 - 20 / 1,003