説明

Fターム[4K058CA13]の内容

金属の電解製造 (5,509) | 溶液電解(電解精製、電解採取) (831) | 電解液 (585) | pH (68) | 酸性 (29)

Fターム[4K058CA13]に分類される特許

1 - 20 / 29


【課題】比較的弱い酸及びアルカリを用いて、酸化物半導体に含まれる金属を回収することが可能な技術を提供することを目的とする。
【解決手段】金属回収方法は、破砕ガラス7の配線金属を、第1電解液14aを用いて溶解する電解酸化を行う工程と、その後の破砕ガラス7のITOを、第2電解液14bを用いて還元してIn,Snを生成する電解還元を行う工程とを備える。そして、金属回収方法は、その後の破砕ガラス7を第3電解液14cに浸漬させて、In,Snを第3電解液14cに溶解した後、当該第3電解液14cからIn,Snを回収する工程を備える。 (もっと読む)


【課題】組成比が一定で、微生物発生防止効果を安定して確保することができ、表面積が大きく微生物発生防止効果が大きく、粉体であることで、パッケージに封入して空気及び/又は水の微生物発生の防止に用いることができ、又は他の素材に混練し微生物発生防止作用を与える等に応用することができる微生物発生防止粉体、その製造方法、微生物発生防止繊維及び微生物発生防止シートを提供する。
【解決手段】電解めっきにより形成されためっき皮膜を粉砕して得られた微生物発生防止粉体であって、この微生物発生防止粉体は、ニッケル又はクロムを含有する微生物発生防止金属の金属元素間に、リン、イオウ、塩素、コバルト及び銀のいずれか1つ以上を含有する微生物発生防止元素が均一に分散してなる微生物発生防止粉体、その製造方法、微生物発生防止繊維及び微生物発生防止シートである。 (もっと読む)


【課題】簡易な構成で効率良く電気銀中の不純物品位の低減が可能な銀の電解精製方法を提供する。
【解決手段】鉛及び銅を含む粗銀をアノード電極として用いた銀の電解精製方法において、pHを1.0〜4.5に調整した銀を40〜70g/L、硝酸を5g/L以下含む硝酸銀溶液を用い、液温度15〜35℃、電流密度250〜350A/m2の条件で、また、電解精製時の銀電解液中の鉛濃度を1.0g/L以下、銅濃度を1.0g/L以下にして行う銀の電解精製方法。 (もっと読む)


【課題】スズ、タリウム、インジウムが共存する溶液から、スズ、タリウムを除去することができる、スズ、タリウムの除去方法、また、スズ、タリウム、インジウムが共存する溶液から効率よく高純度のインジウムを回収できるインジウムの精製方法、を提供する。
【解決手段】スズ、タリウム、インジウムを含有する塩酸酸性溶液からスズ、タリウムを除去する方法であって、塩酸酸性溶液が、塩酸酸性溶液中のスズイオンの濃度が、処理溶液中のタリウムイオンの濃度の50倍以上である塩酸酸性溶液であり、この処理溶液に、硫化剤を添加する浄液工程を行う。浄液工程において、塩酸酸性溶液中に存在するタリウムは硫化スズと共沈する。塩酸酸性溶液中におけるスズの量を、タリウムの量に対して十分な量となるように調整しているので、塩酸酸性溶液中のタリウムのほぼ全量を共沈させるために十分な量の硫化スズ沈澱を発生させることができる。 (もっと読む)


【課題】半導体の製造等に使用する、α線量を低減させた銀又は銀を含有する合金及びその製造方法を提供する。
【解決手段】溶解・鋳造した後の試料のα線量が0.002cph/cm以下である銀。純度3Nレベルの原料銀を硝酸又は硫酸で浸出した後、Ag濃度700g/L以下の電解液を用いて電解精製することにより製造する。 (もっと読む)


【課題】酸化インジウム及び酸化錫を含有する塊状物から容易に高純度インジウムと粗錫を回収することを特徴とするインジウム及び錫の回収方法を提供する。
【解決手段】酸化インジウム、酸化錫を含有する塊状物を730〜1250℃で還元雰囲気にて還元し、インジウム・錫合金アノードを製造した後、1次インジウム電解精製し、インジウム電着物を得て、このインジウム電着物を180〜300℃の範囲にて溶融し、インジウムアノードを鋳造して、2次インジウム電解精製する高純度インジウム、及び粗錫の回収方法。 (もっと読む)


【課題】デンドライト化が抑制された球状でかつ粒子径がナノメータサイズの銅−亜鉛合金微粒子の製造方法を提供する。
【解決手段】電解還元反応による、銅−亜鉛からなる銅合金微粒子の製造方法であって、
(i)少なくとも硫酸銅、硫酸亜鉛、錯化剤(a)、有機分散剤、及び無機分散剤を含む還元反応水溶液(還元反応水溶液1)、(ii)少なくとも塩化第一銅、水溶性亜鉛化合物、錯化剤(b)、有機分散剤、及び無機分散剤を含む還元反応水溶液(還元反応水溶液2)、
(iii)少なくとも酒石酸銅、酸化亜鉛、有機分散剤、及び無機分散剤を含む還元反応水溶液(還元反応水溶液3)、又は(iv)少なくとも酢酸銅、酢酸亜鉛、有機分散剤、及び無機分散剤を含む還元反応水溶液(還元反応水溶液4)、でpHが4.5〜13である還元反応水溶液から、電解還元反応により銅−亜鉛からなる合金微粒子を析出させることを特徴とする、銅合金微粒子の製造方法。 (もっと読む)


【課題】 含銅硫化物を硫酸を用いて浸出する湿式銅製錬プロセスにおいて、プロセスで使用する硫酸量、中和剤を削減し、併せて工程を簡略化する銅の回収方法を提供する。
【解決手段】 銅と鉄を含有する硫化物から銅を分離、回収する銅の回収方法であって、以下の(1)、(2)の工程を有することを特徴とするものである。
(1)銅と鉄を含有する硫化物と、一価の陽イオンを含有する硫酸溶液とを混合したスラリーを102℃以上180℃以下の温度範囲に維持しながら、前記スラリーに酸素または空気を吹き込み、次いで酸素または空気を吹き込まれたスラリーを、浸出液と浸出残渣に固液分離する浸出工程。
(2)前記浸出液を、電解始液として電解採取を行い、電解廃液と電着銅とに分離する電解工程。 (もっと読む)


(1)アノードスライムの前処理と、(2)アノードスライムの第1浸漬処理と、(3)アノードスライムの第2浸漬処理とより成ることを特徴とする原料として電解鉛−ビスマス合金内のアノードスライムを用いて高濃度鉛弗化珪酸溶液を得る電解鉛−ビスマス合金内のアノードスライムの洗浄方法。多量の鉛イオンと弗化珪酸アニオンを含む浸漬液を得るため電解鉛−ビスマス合金からアノードスライムを洗浄する方法。浸漬処理液の上澄液を電解鉛−ビスマス合金の電解液循環システムに直接加え、鉛イオンと弗化珪酸アニオンの利用率を高め、ビスマスと銀を溶錬するための環境を改良し、鉛とビスマス及び銀の溶錬のための生産コストを減少する方法。電解鉛−ビスマス合金のための方法を最適として、電解鉛−ビスマス合金内のリーン鉛の問題を解決する方法。
(もっと読む)


【課題】高価で寿命の短い剥離液を使用せず、剥離後のエッチングもすることなく、連続して効率良く、ニッケルめっきが施された銅又は銅合金屑からニッケルを剥離して、ニッケルめっきが剥離された銅又は銅合金屑を銅又は銅合金の製造用原料として使用し、しかも剥離液の廃液処理の問題も解消し、その廃液からニッケルも回収する。
【解決手段】剥離液Eとして硫酸溶液が貯留された第一電解槽2中に、表面にニッケルめっきが施された銅又は銅合金屑Cを浸漬することにより、Ni+HSO→NiSO+Hなる化学反応によりニッケルめっきを剥離し、剥離されたニッケルを含有する使用済み剥離液を圧力透析装置3にて、濃縮された硫酸ニッケル溶液Mと濃縮された硫酸溶液Rとに分離し、濃縮された硫酸ニッケル溶液Mを第二電解槽4中にて電解することによりニッケルDを回収し、濃縮された硫酸溶液Rは第一電解槽2に戻す。 (もっと読む)


【課題】電解槽中で分散安定性に優れかつデンドロイト化が抑制された銅微粒子を速やかに回収して、分散液に分散する、銅微粒子分散液の製造方法を提供する。
【解決手段】銅イオン、アルカリ金属イオン、及び分散媒が溶解している還元反応水溶液4において、銅イオンの電解還元反応により一次粒子の粒子径が1〜500nmの範囲にある銅微粒子をカソード2表面近傍に析出し(工程1)、前記カソード2表面近傍に析出した銅微粒子を、該掻き取り用ブレード5とカソード2間の相対移動速度が該還元反応水溶液4における銅微粒子の沈降速度よりも遅い速度で掻き取とって、銅微粒子を沈降させてスラリーで濃縮し、該スラリーを抜き出して洗浄液で洗浄して回収する工程(工程2)、及び回収した銅微粒子を分散液に分散する工程(工程3)を含む、銅微粒子分散液の製造方法。 (もっと読む)


【課題】 硫黄含有電気ニッケルを製造する際に、硫黄含有電気ニッケルの切断工程での電着部分の割れの発生を抑制でき、切断時の割れによる不良発生率を大幅に低減することができる硫黄含有電気ニッケルの製造方法を提供する。
【解決手段】 隔膜を施したアノードボックスに不溶性陽極を挿入し、隔膜を施したカソードボックスに陰極を挿入して、塩化ニッケルを主成分とし且つチオ硫酸ナトリウムを含む電解液をカソードボックス内に給液し、アノードボックス内の電解液を発生する塩素ガスと共に系外に排出しながら電解する。その際、電解槽内の電解液のpHを、1.5より大きく且つ2.5より小さいの範囲に制御する。 (もっと読む)


【課題】NbTi系超電導線材からNbTi合金を回収するに際し、毒性ガスや危険物の使用を回避しつつ、短時間で実施でき、しかもCu残存濃度を極力低減できるようなNbTi合金の回収方法を提供する。
【解決手段】NbTi合金の回収方法は、NbTi合金フィラメントとCuを含む超電導線材からNbTi合金を回収する方法において、前記超電導線材を電解することによって、Cuを分離除去する電解工程と、上記電解工程を経た超電導線材をエレクトロンビーム溶解法によって加熱して、NbTi合金フィラメント表面に残存するCuを蒸発分離するエレクトロンビーム溶解工程を、含むものである。 (もっと読む)


【課題】 +2価の亜鉛イオンを含む水溶液から電解によって陰極上へ亜鉛を析出させる電解採取に用いられる陽極であって、酸素発生電位が低くかつ電解によるマンガン化合物の陽極上への析出を抑制することが可能な電解採取用陽極の提供を目的とし、また本発明は亜鉛の電解採取法であって、電解採取時にマンガン化合物が陽極に析出することを抑制することが可能な電解採取法の提供を目的とする。
【解決手段】 本発明の電解採取用陽極は、非晶質の酸化イリジウムを含む触媒層が導電性基体上に形成された亜鉛の電解採取用陽極である。また、本発明の電解採取法は、非晶質の酸化イリジウムを含む触媒層を導電性基体上に形成した電解採取用陽極を用いる亜鉛の電解採取法である。 (もっと読む)


【課題】 全てを湿式法により行う鉛の処理ができる方法が要望されている。
【解決手段】スルファミン酸100〜200g/Lの溶液中にPbを20〜120g/Lに溶かし込んだ溶液から電解採取により鉛をアノード側から二酸化鉛、カソード側から鉛メタルとして回収する鉛の電解方法。 (もっと読む)


【課題】 隔膜電解槽を用いた電解採取法において、陰極室内の液組成不均一が生じるのを防止して、電着不良無く安定した金属ニッケルを製造する方法を提供することを目的とする。
【解決手段】陽極室液面より高く維持した陰極室液面よりさらに高い位置まで隔膜を設けて、陰極室上部の液を滞留させずに側面の隔膜から安定して流すことで液組成分布の不均一発生を防ぐ方法。 (もっと読む)


【課題】鉄イオンを含む酸性塩化物水溶液から電解採取法によって金属鉄を回収する際に、電解槽の槽電圧の低減を図り、電力コストが低い電解処理を行うことができる経済的な電解採取方法を提供する。
【解決手段】隔膜2で仕切られたカソード室3とアノード室4から構成される電解槽1を用いて、鉄イオンを含む酸性塩化物水溶液をカソード室3に供給し、鉄イオンの一部を電解析出させ、続いて隔膜2を通して酸素発生型の不溶性アノード6を備えたアノード室4に導き、鉄イオンを酸化させた後、アノード室4から排出させることにより、鉄を電解採取する方法において、前記電解槽1内での酸性塩化物水溶液の温度を、65〜90℃に制御するとともに、前記不溶性アノード6の表面上の電解液を、アノード表面でのアノード反応のため必要な鉄イオンの供給がなされるのに十分に、強制的に流動させることを特徴とする。 (もっと読む)


【課題】銅溶解液中から銅電解の阻害元素である砒素等の不純物の含有量を低減でき、粗銅粉を用いた銅の製造方法に使用する銅電解液を効率よく製造することができる銅溶解液の浄液方法及び銅の製造方法を提供する。
【解決手段】粗銅粉を溶解してなる銅溶解液から、一次残渣を濾別した濾液に粗銅粉を添加し、遊離硫酸濃度を下げ、前記濾液中の不純物を除去して銅電解液を調製することを特徴とする銅溶解液の浄液方法である。前記不純物が、As、Sb及びSnから選択される少なくとも1種である態様などが好ましい。 (もっと読む)


【課題】有用な貴金属を早期に回収でき、その有効利用が図れ、不純物を電解前に除去することができ、粗銅粉を用いることにより銅の溶解効率が向上し、硫酸を繰り返し使用して効率よく電気銅を製造することができる銅の製造方法の提供。
【解決手段】粗銅粉を、酸化剤及び硫酸を含む液に溶解させて銅溶解液を作製する銅粉溶解工程と、前記銅溶解液を濾過し、濾液と貴金属を含む一次残渣を得る濾過工程と、前記濾液を銅電解液とし、該銅電解液を電解して電気銅を製造する電解工程と、を含むことを特徴とする銅の製造方法である。 (もっと読む)


【課題】銅を含有する酸性塩化浴からなる電解液から平滑性に優れた電着物を得ることができる安全性と経済性に優れた銅電解方法を提供する。
【解決手段】銅を含有する酸性塩化浴からなる電解液から平滑性に優れた電着物を得る銅電解方法であって、前記電解液をカソードとアノードを備えた電解槽へ給液し、電解槽への通電を断続通電とするとともに、1周期での通電時間と停電時間の合計時間で通電時間を除して求めた有効通電率が50〜90%であることを特徴とする。 (もっと読む)


1 - 20 / 29