説明

Fターム[4K070AB06]の内容

炭素鋼又は鋳鋼の製造 (7,058) | 処理目的 (1,383) | 脱燐 (206)

Fターム[4K070AB06]に分類される特許

1 - 20 / 206


【課題】容器内の非対称な位置に吹込み位置を変化させることができ、もって攪拌効率、反応効率の向上効果を図れる粉体吹込み方法を提供する。
【解決手段】溶融金属の成分を調整するために粉体を容器3内の溶融金属に吹き込む粉体吹込み方法において、ランス1を支持する台車2を水平面内において円弧又は円の軌道に沿って円周方向に移動させながら、ランス1の先端から容器3に貯蔵された溶融金属5にキャリアガスと共に粉体を吹き込む。 (もっと読む)


【課題】吹錬の前半において吹錬を中断することなく、又、サンプラープローブ11を未滓化のCaOなどによって破損することを防止しながらスラグSを採取することができるようにする。
【解決手段】本発明の吹錬中におけるスラグの採取方法では、スラグSを採取する採取部12を備えたサンプラープローブ11を用いて、吹錬中の転炉からスラグを採取するに際しては、転炉1への副原料の供給量の合計を20kg/t以上としたうえで、吹錬に要する時間の前半50%に達するまでに、サンプラープローブ11の下端を湯面9aより上方とすると共にサンプラープローブ11の採取部12を、H<a/(0.0065A)を満たすように位置の設定をする。Hは湯面9aから採取部12の下端までの設定高さ(m)、aは副原料の供給量の合計(t)、Aは転炉1の胴部5におけるパーマ煉瓦内の断面積(m)である。 (もっと読む)


【課題】溶銑配合率を低減し得る粉体吹込みランス、その吹込みランスを用いた溶鉄の精錬方法を提案する。
【解決手段】円形軌道に沿い間隔をおいて配列され、鉄浴型精練炉に収容された鉄浴中へ酸素ガスを吹込む複数の噴出開口を有する精錬用酸素ガス吹込みノズル5b1と、前記円形軌道の中心軸と同軸になる軸芯を有し、該精錬用酸素ガス吹込みノズルの内側にて火炎を形成するとともに、該火炎によって着熱された粉体を前記鉄浴中へ吹き込む噴出開口を有するバーナーノズル5b2とを備えた粉体吹込みランスにおいて、前記精練用酸素ガス吹込みノズル5b1の噴出開口と前記バーナーノズル5b2の噴出開口との位置関係を示す指標Fを調整することにより、精錬用酸素ガスとバーナーによる火炎の干渉が小さくなり、火炎温度が高位に保たれて粉体が効率的に加熱され、溶鉄着熱効率の向上を図る。 (もっと読む)


【課題】溶銑脱硫スラグの発生をなくし、転炉スラグのフッ素レス化と脱Cスラグの脱P工程リサイクルを促進し、さら二次精錬スラグをフッ素レス化して製鋼工程内リサイクルを進め、製鋼工程から系外に排出されるスラグ量を低減するとともに、系外に排出されるスラグのフッ素レス化を実現する。
【解決手段】RH真空脱ガス装置に加えて、アーク加熱手段を有する二次精錬装置(アーク加熱二次精錬装置)を用いて溶湯の加熱昇温を行うことにより、先立つ転炉精錬でのホタル石使用を不要とするとともに二次精錬でのホタル石使用を不要とし、アーク加熱二次精錬装置で脱硫精錬を行うことによって溶銑予備脱硫を不要とするとともに二次精錬スラグの転炉リサイクルを可能にする。 (もっと読む)


【課題】できるだけ少ないCaO原単位で、かつカルシウムフェライト原単位をできるだけ低減しながら溶銑脱りんし、処理後溶銑中[P]濃度を0.020質量%以下、処理後スラグ塩基度を1.8以下とする。
【解決手段】上底吹き転炉を用いて、生石灰、酸化鉄、およびカルシウムフェライトを90質量%以上含む精錬剤を炉内に添加して溶銑脱りんする方法である。生石灰の添加は、粒径5〜30mmのものを転炉の上方から炉内に投入する方法、および粒径3mm以下のものを上吹きランスから酸素とともに溶銑へ吹き付ける方法のいずれか一方または両方により、その添加量を、上吹き酸素の全吹付け時間の35%が経過した時点における装入塩基度が0.3以上1.0以下となるように調整して、行う。さらに、カルシウムフェライトを90質量%以上含む精錬剤の添加は、粒径5〜50mmのものを転炉の上方から炉内に投入する方法により、その添加量を、上吹き酸素の全吹付け時間の35%が経過した時点より後であって、その80%が経過するまでの間に、実塩基度が1.5以上1.8以下となるように調整して、行う。 (もっと読む)


【課題】 溶鉄を酸化精錬する際に、上吹きランスの下方にバーナー火炎を安定的に形成させ、それにより、冷鉄源の配合比率を安定して高める。
【解決手段】 粉状精錬剤供給流路、燃料ガス供給流路、該燃料ガスの燃焼用酸化性ガス供給流路、精錬用酸化性ガス供給流路を有する上吹きランス3を用い、前記燃料ガス供給流路から、該燃料ガス供給流路の出口における単位断面積あたりの投入熱量が250kJ/(mm2・分)以上800kJ/(mm2・分)以下となる燃料ガスを供給すると同時に、前記燃焼用酸化性ガス供給流路から酸化性ガスを供給して、上吹きランスの先端下方に火炎を形成させながら、前記粉状精錬剤供給流路から、粉状精錬剤29として、酸化鉄、石灰系媒溶剤、可燃性物質のうちの1種以上を不活性ガスとともに転炉内溶銑浴面に向けて供給し、且つ、前記精錬用酸化性ガス供給流路から精錬用酸化性ガスを溶銑浴面に向けて供給し、転炉内の冷鉄源の添加された溶銑26を酸化精錬する。 (もっと読む)


【課題】製鋼コストの上昇や炉体耐火物の損耗などを招くことなく溶鉄を精錬処理することのできる溶鉄の精錬方法を提供する。
【解決手段】上吹きランス5として中心部に精錬剤放出路51を有し、かつ精錬剤放出路51の周囲に燃料放出路52、燃料燃焼用ガス流路53、脱燐精錬用ガス流路54、冷却水内側流路55及び冷却水外側流路56が同心円状に形成されたものを用いる。精錬剤放出路51に粉状精錬剤を不活性ガスと共に供給し、燃料放出路52に供給された燃料と燃料燃焼用ガス流路53に供給された燃料燃焼用ガスとを上吹きランス5の先端部から転炉内に放出して燃料を燃料燃焼用ガスにより燃焼せしめると同時に、精錬剤放出路51に供給された粉状精錬剤を不活性ガスと共に上吹きランス5の先端中心部から転炉内に放出して溶鉄の精錬処理を行う。 (もっと読む)


【課題】炭材量を削減でき、さらに高着熱効率による、溶銑配合率を低下することができる溶銑の脱燐および/または脱炭を行う溶鉄の精錬方法を提供する。
【解決手段】酸化性ガスを鉄浴型精錬炉内に供給する上吹きランス7と、上吹きランス7とは別に設けられ粉粒状の副原料を鉄浴型精錬炉内に装入する粉体装入ランス5とを設置し、粉体装入ランス5の先端に、粉粒状の副原料23を噴射する粉粒体噴射ノズルと、燃料を噴射する燃料噴射ノズルと、燃焼用の酸素ガスを噴射する酸素ガス噴射ノズルとを有するバーナノズルを設け、該バーナノズルから発生する火炎21の中を通過するように前記粉粒状の副原料23を前記鉄浴型精錬炉内に装入して脱燐を行う。 (もっと読む)


【課題】 燐を含有する製鋼スラグの製銑工程及び製鋼工程へのリサイクルに当り、該スラグから燐及び鉄を安価に回収するとともに、回収した燐及び鉄を資源として活用する。
【解決手段】 本発明のスラグからの鉄及び燐の回収方法は、燐含有製鋼スラグを、該スラグを含めて還元処理される対象物全体の塩基度(CaO/SiO2)が1.0〜3.0の範囲になるように調整した上で、1100〜1300℃で炭素含有還元剤でスラグ中の鉄酸化物を還元して還元鉄を得る第1の工程と、第1の工程によって鉄酸化物量が低下したスラグを、炭素含有還元剤で還元してスラグ中の燐酸化物を気相へ還元除去する第2の工程と、第2の工程によって得られたスラグを製銑又は製鋼工程でのCaO源として再利用する第3の工程と、第1の工程で得た還元鉄を製銑又は製鋼工程での鉄源として再利用する第4の工程と、第2の工程で気相へ還元除去した燐を、排ガス設備で回収して燐酸資源原料とする第5の工程と、を有する。 (もっと読む)


【課題】溶銑脱燐処理を行った溶銑を対象として、その溶銑を転炉を用いてスピッティングやダストの発生量を抑制しつつ、高能率かつ高効率で脱炭処理する方法を提供する。
【解決手段】上底吹き型の転炉を用いて、溶銑脱燐処理を施された溶銑に該溶銑トン当たり4.0〜5.5Nm/minの速度で上吹き酸素を吹き付けて脱炭処理を行う。その際に、上吹き酸素の吹付け時間が全吹付け時間の1/5経過するまでに取鍋スラグを転炉内に投入すると共に、上吹き酸素の吹付け終了時点での転炉内スラグ中Al質量%とCaO質量%との比が0.05〜0.09の範囲になるように調整する。さらに、上吹き酸素吹付けによるL/Lを、上吹き酸素の全吹付け時間の1/4が経過する時点までは0.03〜0.10に、その後その上吹き酸素の吹付け終了までは0.20〜0.35に制御する。 (もっと読む)


【課題】鋼中のS濃度を高くすることなく、また二酸化炭素(CO2)発生量を増大させることなく、さらには炉体耐火物を損耗させることなく、溶銑配合率を低下させることができる鋼の精錬方法を得る
【解決手段】本発明に係る溶鉄の精錬方法は、鍋、トーピードカーなどの鉄浴輸送器または転炉型精錬炉において脱燐処理を行い、その後に鉄浴型精錬炉において脱炭処理を行う溶鉄の精錬方法であって、前記脱燐処理においては上吹きランスのノズルからの酸化性ガスの吐出流速を250m/s以下として精錬を行うことを特徴とするものである。 (もっと読む)


【課題】転炉吹止め時における溶鋼中りん濃度の制御精度を高めることが可能な転炉吹錬制御方法を提供する。
【解決手段】少なくとも、転炉吹錬時における排ガス成分及び排ガス流量を定期的に測定して、測定値を得る測定工程と、転炉吹錬の操業条件及び測定工程で得られた測定値に基づいて脱りん速度定数を推定する定数推定工程と、推定された脱りん速度定数を用いて、転炉吹錬中の溶鋼中りん濃度を逐次推定する濃度推定工程と、推定された溶鋼中りん濃度が目標溶鋼中りん濃度以下であるか否かを判断する濃度判断工程と、該濃度判断工程で、推定された溶鋼中りん濃度が目標溶鋼中りん濃度を超えていると判断された場合に、濃度推定工程で推定される溶鋼中りん濃度が目標溶鋼中りん濃度以下となるように、転炉吹錬の操業条件を変更する変更工程と、を有する、転炉吹錬制御方法とする。 (もっと読む)


【課題】コストアップを抑えて生石灰を製造し、含有S濃度により分別してその全部を各製鋼プロセスの特性に合わせて使い分けることによって生石灰の利用効率を高め、製鋼方法全体を合理化する方法を提供する。
【解決手段】焼成された生石灰表面を研磨して、S含有率が高い表層部分とS含有率が低い内層部分とに分別し、該表層部分は溶銑脱硫工程において脱硫用副原料として用い、
該内層部分は溶銑脱燐工程において、または溶銑の脱燐・脱炭工程において、脱燐用副原料として用いる。 (もっと読む)


【課題】溶銑を転炉で予備脱燐処理し、次いで、この溶銑に別の転炉で脱炭精錬を行って溶鋼を製造するにあたり、上吹きランスの流路内での発熱・燃焼を危惧することなく、高い着熱効率及び生産性で溶鋼を製造する。
【解決手段】精錬剤供給路と、第1の燃料供給路と、燃焼用ガス供給路と、脱燐用酸化性ガス供給路と、第2の燃料供給路と、を構成する第1の上吹きランス1を用い、第1及び第2の燃料供給路からの燃料により火炎を形成させながら、精錬剤供給路から不活性ガスともに酸化鉄、石灰系媒溶剤、可燃性物質の1種以上を供給しながら脱燐用酸化性ガスを吹き付けて溶銑を予備脱燐処理し、次いで、溶銑を別の転炉に装入し、精錬用酸素ガス供給路と、燃料供給路とを有する第2の上吹きランスを用い、燃料供給路からの燃料により火炎を形成させながら、精錬用酸素ガス供給路から酸素ガスとともに粉状媒溶剤を供給して溶銑を脱炭精錬して溶鋼を製造する。 (もっと読む)


【課題】転炉型精錬容器を用いて、上吹きランスから粉体副原料を酸素含有ガスとともに上吹きして溶銑を精錬する際に、発生するスピッティングを少なく抑える。
【解決手段】酸素含有ガス及び粉体副原料の混合体の流路6aを有するランス内管6と、ランス内管6の先端のノズルスロート8を介して流路6aに連通して延設される噴出孔7aを有するノズル部7とを備え、かつ、ノズルスロート8における、噴出孔7aの延設方向と直交する断面における噴出孔7aの横断面積の総和S0と、流路6aの最大の横断面積A0との比(S0/A0)が0.1〜0.6であるとともに、流路6aにおけるノズルスロート8よりも上流側に位置する内壁面6dにおける、内壁面6dに接する平面9とランス中心軸6bとのなす角度θが45°以上である部分6eの、ランス中心軸6bに垂直な面への投影面積Aが(A/A0)≧0.40を満足する上吹きランス5から、酸素含有ガスとともに粉体副原料を溶銑に吹付けて精錬する。 (もっと読む)


【課題】 溶銑を転炉で脱燐処理し、次いで、この溶銑を別の転炉で脱炭精錬を行って溶鋼を製造するにあたり、上吹きランスの流路内での発熱・燃焼を危惧することなく、高い着熱効率及び生産性で溶鋼を製造する。
【解決手段】 粉状精錬剤供給流路、燃料供給流路、燃料燃焼用ガス供給流路、脱燐精錬用ガス供給流路を、独立して有する上吹きランス3を用い、燃料供給流路から供給する燃料と燃焼用ガス供給流路から供給する酸化性ガスとにより火炎を形成させながら、粉状精錬剤供給流路から、酸化鉄、石灰系媒溶剤、可燃性物質のうちの1種以上を不活性ガスとともに供給し、且つ、脱燐精錬用ガス供給流路から酸化性ガスを供給して溶銑7を脱燐処理し、次いで、該溶銑を別の転炉に装入し、脱炭精錬用ガス供給流路を有する上吹きランスを用い、脱炭精錬用ガス供給流路から粉状の媒溶剤を脱炭精錬用酸化性ガスとともに転炉内の溶銑浴面に向けて供給して溶銑を脱炭精錬する。 (もっと読む)


【課題】 燐を含有する製鋼スラグの製銑工程及び製鋼工程へのリサイクルに当り、該スラグから燐及び鉄を安価に回収するとともに、回収した燐及び鉄を資源として活用する。
【解決手段】 本発明のスラグからの鉄及び燐の回収方法は、燐を含有する製鋼スラグを、該製鋼スラグの塩基度(CaO/SiO2)と還元処理温度Tとの関係が下記の(1)式を満足するように調整して炭素を含有する還元剤を用いて還元処理し、還元鉄を回収すると共にスラグに含有される燐の20質量%以上を気相へ還元除去する第1の工程と、還元処理によって燐含有量が低下したスラグを製銑工程又は製鋼工程でのCaO源としてリサイクルする第2の工程と、回収した還元鉄を製銑工程又は製鋼工程での鉄源としてリサイクルする第3の工程と、気相へ還元除去した燐を排ガス処理系統で回収して燐酸資源原料とする第4の工程と、を有する。 還元処理温度T(℃)≧200×(スラグの塩基度)+1050 …(1) (もっと読む)


【課題】吹錬中のスロッピングを安定的に回避しうる溶銑脱りん方法を提供する。
【解決手段】上底吹き転炉型容器を用い、上吹き酸素流量1.5〜4.0Nm/min/溶銑t、底吹きN流量0.1〜0.6Nm/min/溶銑tとして、生石灰および酸化鉄を添加し、処理後のスラグ塩基度は1.5〜2.5で、吹錬中にサブランスからスラグへコークス粉を吹き付ける溶銑脱りん方法において、コークス粉吹き付け速度を、上吹き酸素流量および処理前溶銑中[Si]濃度と[Ti]濃度の和によって規定される所定の範囲とし、コークス粉吹き付け量を、上吹き酸素流量および上記の濃度の和により規定されたコークス粉吹き付け速度に基づき設定される所定の範囲とする。 (もっと読む)


【課題】転炉精錬において、脱燐剤の吹き付けを行なう設備が無くても、効率よく転炉操業を行なうための精錬方法及び溶鋼の製造方法を提供することを目的としている。
【解決手段】溶銑への脱燐剤の吹き付けを行なうことなく、溶銑の脱燐精錬または脱燐脱炭精錬を行なう精錬方法において、少なくとも粉体が含まれる脱燐剤を反応容器に装入した後に、上記反応容器に溶銑を装入して精錬を行なう。 (もっと読む)


【課題】吹錬処理後のスラグ中の生石灰濃度を精度高く予測すること。
【解決手段】類似度算出部10aが、実績データベース4内に格納されている複数の溶銑状態及び吹錬条件xについて、予測対象の溶銑状態及び吹錬条件xに対する類似度Wを算出し、予測式作成部10bが、実績データベース4に格納されている溶銑状態及び吹錬条件xのデータを用いて、溶銑状態及び吹錬条件xと吹錬処理後のスラグ中の生石灰濃度yとの関係を表す予測モデルを作成すると共に、類似度Wを重みとする評価関数を予測モデルの予測誤差を評価する評価関数として最適化問題を解くことによって、予測モデルのモデルパラメータを決定し、生石灰濃度予測部10cが、予測モデルに予測対象の溶銑状態及び吹錬条件xを入力することによって、予測対象の溶銑状態及び吹錬条件xで吹錬処理を行った場合の吹錬処理後のスラグ中の生石灰濃度yを予測する。 (もっと読む)


1 - 20 / 206