説明

Fターム[4L037UA20]の内容

無機繊維 (8,808) | 用途 (1,044) | その他の用途 (79)

Fターム[4L037UA20]に分類される特許

1 - 20 / 79


【課題】耐火性、生体溶解性に優れる生体溶解性繊維を含む、実用特性を有する不定形組成物を提供する。
【解決手段】以下の組成の被覆層で被覆されていない無機繊維、無機バインダー及び溶媒を含み、さらに針状結晶構造を含まない無機粉体を含むことができ、前記無機繊維と無機粉体との割合が、無機繊維:無機粉体=100:0〜10:90であり、pH調整剤と有機繊維は含まない、ペースト状不定形組成物。[無機繊維の組成]SiO66〜82重量%、CaO10〜34重量%、MgO3重量%以下、Al5重量%以下、SiO、CaO、MgO、Alの合計98重量%以上 (もっと読む)


【課題】高強度で耐シンタリング性を有する触媒繊維及びその製造方法を提供する。
【解決手段】シリカ成分を主体とする酸化物相(第1相)とシリカ以外の金属からなる金属酸化物相(第2相)との複合酸化物相からなるシリカ基複合酸化物繊維であって、前記金属酸化物相(第2相)を構成する金属酸化物の少なくとも1以上の金属元素の存在割合が繊維表面に向かって傾斜的に増大しており、前記金属酸化物相(第2相)は、それを構成する金属が粒子状に形成され、その粒子間に繊維表面から繊維内部に向かう平均細孔径が2〜30nmのメソポアが形成され、前記メソポア中に平均粒子径が0.5〜25.0nmの金属ルテニウム(Ru)粒子が担持されていることを特徴とする触媒繊維である。 (もっと読む)


【課題】本発明は、高い水質浄化能力を持ち、かつ、水との摩擦や固着物の重さによっても繊維が切断されにくい水浄化用炭素繊維を提供することを目的としている。
【解決手段】本発明の水浄化用炭素繊維は、20℃での水蒸気吸着等温線において相対蒸気圧0.35での水蒸気吸着量が1.0cm/g以上であり、相対蒸気圧0.95での水蒸気吸着量と相対蒸気圧0.65での水蒸気吸着量の差が0.50cm/g以上であり、かつ、平均単繊維強度が5400〜10000MPaの水浄化用炭素繊維である。本発明の水浄化用炭素繊維を、構成する炭素繊維の単繊維が水中で揺動しやすい柔軟な組織体に加工することにより、水質浄化能力の高い水質浄化材を得ることができる。 (もっと読む)


【課題】ナノファイバ基板から放射状に延びた少なくとも1つのカーボンナノチューブを有する階層構造、ならびにその使用方法および製造方法を提供する。
【解決手段】電界紡糸用ポリマーと少なくとも1種の金属とを含む溶液を電界紡糸して金属含有ナノファイバを製造する工程と、得られた前記金属含有ナノファイバを炭化する工程と、前記金属を触媒とし、炭化水素化合物を原料として、カーボンナノチューブを形成させる工程とを含む。前記金属がAg、Fe、Pd、NiまたはCoである。ナノチューブは約30nmから約300mmの直径を有し、約10nmから約10,000mmの長さを有する。 (もっと読む)


【課題】液中における処理能力の高い活性炭素繊維、それを用いた排水処理装置及び活性炭素繊維の評価方法を提供する。
【解決手段】本発明に係る活性炭素繊維は、ゼロ電荷点が8.0以上の活性炭素繊維である触媒活性を備えてなるものであり、ゼロ電荷点が高い活性炭素繊維を用いることで、酸化力が高い設備のコンパクト化を図ることができることとなる。また、ゼロ電荷点により液相酸化速度を定量的に把握することができるので、定量的に活性炭素繊維を評価することができる。また、ゼロ電荷点により酸化速度を把握できるので、活性炭素繊維の劣化状況や寿命を容易に把握することができる。 (もっと読む)


【課題】耐熱性、耐酸化性および機械的強度に優れたセラミックス繊維を製造する方法およびその方法により得られるセラミックス繊維を提供することを課題とする。
【解決手段】溶融性シリコーン樹脂を溶融紡糸して得られた繊維を、常温よりも高く該樹脂の軟化点よりも低い温度で加熱しながら、不融化剤からの蒸気により不融化した後、焼成してセラミックス繊維を得ることにより、上記の課題を解決する。 (もっと読む)


【課題】生体溶解性の高い無機繊維を簡便かつ低コストに製造する方法を提供する。
【解決手段】無機繊維を製造する方法であって、水溶性の塩基性カルボン酸アルミニウムと水溶性のカルシウム化合物とを水性媒体中に溶解して紡糸原料水性溶液を作製した後、該紡糸原料水性溶液を、静電紡糸法により紡糸して粗無機繊維を得、次いで、該粗無機繊維を焼成することにより、アルミニウム元素をAl換算で88質量%〜53質量%含むとともに、カルシウム元素をCaO換算で12質量%〜47質量%含む無機繊維を得ることを特徴とする無機繊維の製造方法。 (もっと読む)


本発明は、ゾル・ゲル前駆体を用いた金属酸化物ナノ繊維の製造法に関する。本発明による方法により製造されたナノ繊維は、従来技術に比して高められた金属酸化物割合により傑出している。 (もっと読む)


【課題】エレクトロスピニング法によるナノ構造体の製造において、ナノ構造体を取り巻いている有機高分子(ポリマー)の熱処理温度を200℃以下に下げて、プラスチックフィルムなどの高温に耐えなかった基板への適用も可能にするナノ構造体の形成方法を提供する。
【解決手段】ナノ構造体を取り巻いている有機高分子体を、エキシマランプの照射下で熱処理することで取り除き、かつ、ナノ構造体の酸化を進め、低温での酸化物ナノ構造体の露出を行うことを可能とする。 (もっと読む)


【課題】エレクトロニクス関連分野の高精度・高密度なスクリーン印刷を行うことが可能となるスクリーン印刷用金属メッシュ織物を提供する。
【解決手段】母材がオーステナイト系ステンレス鋼からなる線材がメッシュ織物に製織されたスクリーン印刷用金属メッシュ織物であって、上記線材の表層部に、母材のオーステナイト相に炭素が固溶することにより母材より硬度の高い炭素固溶硬化層が形成され、縦方向におけるメッシュ織物としての破断強度が1000MPa以上2600MPa以下、破断伸びが1%以上8%以下、1%耐力が900MPa以上2400MPa以下であり、横方向におけるメッシュ織物としての破断強度が1200MPa以上3400MPa以下、破断伸びが0.8%以上6%以下、1%耐力が900MPa以上2800MPa以下である。 (もっと読む)


【課題】植物系天然素材を炭化して優れた防火耐火断熱性能を持つ材料を提供する。
【解決手段】処理溶液として、株式会社JERICOの防火薬剤ARTEX(アルテックス)MFの水溶液(濃度12重量%)を用意した。また、植物系天然素材として、綿、木、もみがら、稲わら、麻、パームヤシ、かやを用意した。各素材につき、各処理溶液に十分含浸させたあと、24時間自然乾燥するか70℃で3時間の強制乾燥を行い、サンプルを作製した。各サンプルを窒素ガス(5リットル/分、封入)雰囲気下、電気炉中、270℃で10分加熱することにより炭化を行った。こうして得られた材料は、優れた防火耐火性能を有していた。 (もっと読む)


【課題】優れた機械的強度を有するカーボンナノチューブバルク素材及びその製造方法を提供する。
【解決手段】カーボンナノチューブバルク素材100は、マトリックスを構成するカーボンナノチューブ110と、上記カーボンナノチューブの間に介在される高分子結合剤120とを含み、上記高分子結合剤は、高分子バックボーンと、上記高分子バックボーンの末端または側面にグラフトされ、且つ1つ以上のヒドロキシ基が結合されたC−C24芳香族作用基を含む1つ以上の有機モイアティ(moiety)とを含む。カーボンナノチューブバルク素材の製造方法は、高分子結合剤を揮発性溶媒に溶解した高分子結合剤溶液を、カーボンナノチューブエアロゲルに浸透させる段階と、揮発性溶媒を除去し、カーボンナノチューブエアロゲルを緻密化させる段階を含む。 (もっと読む)


【課題】 高品質な炭化綿を量産することができる炭化綿製造装置を提供する。
【解決手段】 炭化炉2と、炭化炉2内に長尺布巾状の木綿3を搬送する搬送部4と、炭化炉2内に搬送された木綿3に、加熱水蒸気を透過させる水蒸気供給部5と、加熱水蒸気を排気する水蒸気排気部6と、木綿に水を供給し冷却する冷却部7と、各部を制御する制御部9とを備え、搬送部4は、木綿3を炭化炉2の全長に亘って搬送する第1の搬送部21と、第1の搬送部21の搬送方向と反対の搬送方向に折返し搬送する第2の搬送部22とを有し、第1及び第2の搬送部21、22は、加熱水蒸気を透過するとともに、木綿3を水蒸気供給部5からの加熱水蒸気が供給される方向に対し、所定の角度傾斜する方向に搬送する。 (もっと読む)


【課題】繊維径が小さく、高温環境下に曝されても元の形状を保ち、かつ、水に対して十分な分解性を有すとともに、製造時の環境も安全な無機繊維の製造方法を提供すること。
【解決手段】SiO、CaO、およびMgOを必須成分とする無機繊維であって、ケイ素の含有率が5モル%以上80モル%以下、カルシウムの含有率が5モル%以上80モル%以下、マグネシウムの含有率が2モル%以上80モル%以下(ただし、上記の含有率は、該無機繊維における酸素以外の元素の存在量の総和に対する各元素のモル%である)であり、実質的にアルミニウムを含まず、平均繊維径が100nm以上2000nm以下であり、瘤状の部分を有しないことを特徴とする無機繊維。 (もっと読む)


【課題】
高引張強度かつ高引張弾性率の炭素繊維を製造することができる前駆体繊維の製造方法を提供する。
【解決手段】
以下の工程を含むことを特徴とする、炭素繊維の前駆体繊維の製造方法:
(1)ジメチルスルホキシドにカーボンナノチューブを添加し、超音波を照射してカーボンナノチューブを分散させ、カーボンナノチューブ分散液を調製する工程;
(2)このカーボンナノチューブ分散液とポリアクリロニトリル系ポリマーのジメチルスルホキシド溶液とを合わせて、紡糸原液を調製する工程;
(3)この紡糸原液を、紡糸口金を経て凝固浴中に吐出して、凝固糸を得る工程;そして
(4)この凝固糸を延伸して炭素繊維の前駆体繊維を得る工程。 (もっと読む)


【課題】中間体である繊維状炭素前駆体の段階で折損による繊維長の減少を起こすことなく、繊維長が長く分岐の無い極細炭素繊維が得られるピッチ繊維を製造する方法を提供する。
【解決手段】以下(1)〜(2)の工程を含むピッチ繊維の製造方法。
(1)熱可塑性樹脂100質量部と、ピッチ1〜150質量部からなる混合物から前駆体繊維を形成する工程
(2)ヨウ素を0.01〜30質量%含有する溶液にて該前駆体繊維を処理することにより、該前駆体繊維中の熱可塑性樹脂を除去してピッチ繊維を得る工程 (もっと読む)


【課題】
本発明は、炭素ナノ繊維に係り、より具体的には、ピッチとポリアクリロニトリル(PAN)とを含むスキン−コア(skin−core)構造を有する炭素ナノ繊維、その製造方法、および炭素ナノ繊維を含む製品に関する。
【解決手段】本発明の炭素ナノ繊維は、1μm以下の直径および互いに異なる特性を有するPANとピッチがスキン層および/またはコア層を成して構成されているため、その成分構成が変わることにより炭素ナノ繊維の機能も多様になるという優れた効果がある。 (もっと読む)


【課題】 本発明はアルミニウム導体コンポジットコア強化ケーブル(ACCC)(300)および製造方法を提供する。
【解決手段】 少なくとも1層のアルミニウム導体(306,308)により囲まれるコンポジットコア(302,304)を持つACCCケーブルに関する。コンポジットコアは、軸方向に配向されかつ充分に連続した少なくとも1種類の強化繊維を熱硬化性樹脂マトリクス中に有し、約90〜約230℃の範囲内の使用温度性能、少なくとも50%の繊維体積分率、約1.10〜約1.65GPa(約160〜約240Ksi)の範囲の引張強度、約50〜約210GPa(約7〜約30Msi)の範囲の弾性率、および約0〜約6×10−6m/m/℃の範囲の熱膨張率を持つ。 (もっと読む)


【課題】本発明の課題は、軽量で不燃性の繊維シートを提供することにある。
【解決手段】アルミナ繊維を主体とする繊維のシートであって、上記シートには合成樹脂が塗布および/または含浸および/または混合されている不燃性繊維シートを提供する。該繊維シートは成形が容易であり、用途に応じて所定形状に成形が出来る。 (もっと読む)


本方法は、少なくとも1つのケイ素原子を有するケイ素組成物を電界紡糸することによってナノ粒子を製造する。ケイ素組成物を電界紡糸することにより繊維を形成する。繊維を熱分解してナノ粒子を製造する。ナノ粒子は優れたフォトルミネセント特性を有し、多くの様々な用途における使用に好適である。
(もっと読む)


1 - 20 / 79