説明

Fターム[4M104AA04]の内容

半導体の電極 (138,591) | 基板材料 (12,576) | 化合物半導体(半絶縁性基板を含む) (3,646) | III−V族 (2,000)

Fターム[4M104AA04]の下位に属するFターム

GaAs (523)

Fターム[4M104AA04]に分類される特許

161 - 180 / 1,477


【課題】 高周波特性を確保し、サイズを小型化し、かつ製造が容易な、正孔の蓄積を解消できる、耐圧性に優れた、半導体装置等を提供する。
【解決手段】 ヘテロ接合電界効果トランジスタ(HFET:Hetero-junction Field Effect Transistor)であって、非導電性基板1上に位置する、チャネルとなる二次元電子ガス(2DEG:2 Dimensional Electron Gas)を形成する再成長層7(5,6)と、再成長層に接して位置する、ソース電極11、ゲート電極13およびドレイン電極15を備え、ソース電極11が、ゲート電極13に比べて、非導電性基板1から遠い位置に位置することを特徴とする。 (もっと読む)


【課題】トレンチおよび/またはホールの間口のオーバーハングを抑制することができる成膜方法およびリスパッタリング方法を提供すること。
【解決手段】処理容器内にプラズマ生成ガスを導入しつつ誘導結合プラズマ生成機構により処理容器内に誘導結合プラズマを生成し、直流電源から金属ターゲットに直流電力を供給し、バイアス電源により載置台に高周波バイアスを印加して、載置台上の被処理基板に金属薄膜を堆積させる工程と、誘導結合プラズマ生成機構によるプラズマの生成と直流電源への給電を停止し、処理容器内にプラズマ生成ガスを導入しつつ載置台に高周波バイアスを印加して、処理容器内に容量結合プラズマを形成するとともにプラズマ生成ガスのイオンを被処理基板に引き込んで堆積された金属薄膜をリスパッタリングする工程とを有する。 (もっと読む)


【課題】大電流かつ高耐圧な窒化物系半導体デバイスを提供する。
【解決手段】基板10と、基板10の上方に形成された電子走行層30と、電子走行層30上に形成された、電子走行層30とバンドギャップエネルギーの異なる電子供給層40と、電子供給層40上に形成されたドレイン電極80と、ドレイン電極80に流れる電流を制御するゲート電極70と、ゲート電極70をはさんでドレイン電極80の反対側に形成されたソース電極90とを備え、ゲート電極70とドレイン電極80との間の電子走行層30の表面には、2次元電子ガスの濃度が他の領域より低い複数の低濃度領域32が、互いに離れて形成されている、窒化物系半導体デバイス100。 (もっと読む)


【課題】素子面積を増加させずに順電圧降下を低減することができる半導体装置及びその製造方法を提供する。
【解決手段】実施形態に係る半導体装置は、第1半導体領域と、第1電極と、第2半導体領域と、絶縁領域と、第2電極と、を備える。第1半導体領域は、第1部分と、第1主面上において第1主面に直交する第1方向に延在した第2部分と、を有する第1導電形の半導体領域である。第1電極は、第2部分と対向して設けられた金属領域である第3部分と、第3部分と、第2部分と、をむすぶ第2方向に延在し、かつ第1方向に延在する第4部分と、を有する。第2半導体領域は、第2部分と、第3部分と、のあいだに設けられ、第1半導体領域よりも不純物濃度の低い第1濃度領域を有し、第3部分とショットキー接合した第1導電形の半導体領域である。絶縁領域は、第4部分と、第2半導体領域と、のあいだに設けられる。第2電極は、第1部分と導通する。 (もっと読む)


【課題】低オン抵抗、高耐圧及び高信頼性を達成する。
【解決手段】窒化物半導体装置110は、第1半導体層3、第2半導体層4、第1電極10、第2電極7、第3電極8、第1絶縁膜6及び第2絶縁膜5を備える。第1半導体層3は、窒化物半導体を含む。第2半導体層4は、第1半導体層3上に設けられ、孔部4aを有する。第2半導体層4は、第1半導体層3よりも広い禁制帯幅を有する窒化物半導体を含む。第1電極10は、孔部4a内に設けられる。第1電極10の一方側に第2電極7、他方側に第3電極8が設けられ、それぞれ第2半導体層4と電気的に接続される。第1絶縁膜6は、酸素を含有する膜であって、第1電極10と孔部4aの内壁とのあいだ、及び第1電極10と第2電極7とのあいだに設けられ、第3電極8と離間して設けられる。第2絶縁膜5は、窒素を含有する膜であって、第1電極10と第3電極8とのあいだで第2半導体層4に接して設けられる。 (もっと読む)


【課題】素子周辺部での耐圧を高くしながら周辺領域の面積を小さくすることが可能な構造を有する半導体装置を製造可能であり、かつ、CMP工程に起因して素子周辺部での耐圧が低下してしまうことのない半導体装置を提供する。
【解決手段】n型ドリフト層114と、n型ドリフト層114における活性領域R1に形成したp型半導体材料からなる複数の柱状埋込層118と、周辺耐圧領域R2に形成したリング状の第2トレンチ122、第2トレンチ122の内面に形成した絶縁膜124及び第2トレンチ122の内部に絶縁膜124を介して形成した導電性材料層126を有し、逆バイアス時には導電性材料層126及び柱状埋込層118に挟まれた部分のn型ドリフト層114を空乏化させる周辺耐圧構造120と、周辺領域R3に形成したp型半導体材料からなる1又は2以上の第2柱状埋込層130とを備える半導体装置100。 (もっと読む)


【課題】ピンチオフ特性を維持しながら動作効率を向上することができる化合物半導体装置及びその製造方法を提供する。
【解決手段】基板11と、基板11上方に形成された電子走行層12と、電子走行層12上方に形成された電子供給層13と、電子供給層13上方に形成されたソース電極15s及びドレイン電極15dと、電子供給層13上方で、ソース電極15s及びドレイン電極15dの間に形成された第1のゲート電極15g−1及び第2のゲート電極15g−2と、が設けられている。ゲート電極15g−1の仕事関数は、第2のゲート電極15g−2の仕事関数よりも低い。 (もっと読む)


【課題】本発明の実施形態は、サージ耐量が高く、順方向の電流密度を向上させることが可能な半導体装置を提供する。
【解決手段】実施形態に係る半導体装置は、第1導電形の半導体層と、前記半導体層の第1の主面に選択的に設けられた第2導電形の第1の領域と、前記第1の領域に接続して前記第1の主面に選択的に設けられた第2導電形の第2の領域と、を備える。そして、前記半導体層と前記第1の領域とに接して設けられた第1の電極と、前記第2の領域に接して設けられた第2の電極と、前記半導体層の前記第1の主面とは反対の第2の主面側に電気的に接続された第3の電極とを備える。 (もっと読む)


【課題】高電子移動度トランジスタの耐圧を高くする。
【解決手段】第1の高電子移動度トランジスタ4と、負の閾値電圧を有する第2の高電子移動度トランジスタ6とを有し、第2の高電子移動度トランジスタ6のソースS2は、第1の高電子移動度トランジスタ4のゲートG1に接続され、第2の高電子移動度トランジスタ6のゲートG2は、第1の高電子移動度トランジスタ4のソースS1に接続されている。 (もっと読む)


【課題】高出力の窒化ガリウムショットキー・ダイオード素子を提供する。
【解決手段】1〜6μmの厚さを有するn+型ドープしたGaNダイオードから製造した窒化ガリウムベースの半導体ショットキー・ダイオードをサファイア基板の上に配設する。1μmを超える厚さを有するn−型ドープしたGaNダイオードを、複数の細長形の指にパターン化した前記n+型ドープGaNダイオード上に配設し、金属層をn−型ドープGaN層上に配設し、それとの間にショットキー接合を形成する。細長形の指の層厚、長さおよび幅は、降伏電圧が500Vを超え、電流容量が1アンペアを超え、かつ順方向電圧が3V未満である素子を得るように最適化される。 (もっと読む)


【課題】定電流動作が可能な窒化物半導体装置を提供する。
【解決手段】窒化物半導体を含む半導体層30と、ソース電極40と、ドレイ電極50と、第1ゲート電極10と、第2ゲート電極20と、を備えた窒化物半導体装置111が提供される。ソース電極40とドレイン電極50は、主面上に設けられ、半導体層とオーミック性接触を形成し、互いに離間する。第1ゲート電極10は、主面上においてソース電極40とドレイン電極50との間に設けられる。第2ゲート電極20は、主面上においてソース電極40と第1ゲート電極10との間に設けられる。ソース電極40と第1ゲート電極10との間の電位差が0ボルトのときに、半導体層30のうちの第1ゲート電極に対向する部分は導通する。第1ゲート電極10は、第2ゲート電極20に印加される電圧に応じた定電流をスイッチングする。 (もっと読む)


【課題】 TiC膜を含む半導体構造を形成する方法を提供する。
【解決手段】 高誘電率(k)の誘電体14および界面層12を含む積層体を基板10の表面上に設けるステップと、Heによって希釈された炭素(C)源およびArを含む雰囲気において、Tiターゲットをスパッタすることにより、前記積層体上にTiC膜16を形成するステップとを含む、半導体構造を形成する方法である。 (もっと読む)


【課題】半導体装置内に保護ダイオードをレイアウトする。
【解決手段】半導体装置は、電界効果トランジスタ11と、電界効果トランジスタ11の形成領域30に隣接するダイオード形成領域12とを備え、ダイオード形成領域12はトランジスタの形成領域30と半導体基板上で絶縁され、ダイオード形成領域12内において、電界効果トランジスタ11のゲート電極1がバス配線7を介して半導体基板とショットキー接合とオーミック接合のいずれか又は両方の接合をする第1のダイオード電極20と、電界効果トランジスタ11のソース電極2がパッド5を介して半導体基板とオーミック接合とショットキー接合のいずれか又は両方の接合をする第2のダイオード電極21とを備えることによってゲート電極1とソース電極2間にダイオードが形成されたことを特徴とする。 (もっと読む)


【課題】デバイス利得、帯域幅、および動作周波数が増加するトランジスタを提供する。
【解決手段】第1のスペーサ層28が、ゲート電極24とドレイン電極22との間、およびゲート電極24とソース電極20との間の活性領域の表面の少なくとも一部の上にある。ゲート電極24は、ソース電極20とドレイン電極22に向かって延在する一般的にT字型の頂部34を備える。フィールドプレート32は、スペーサ層28の上であって、ゲート頂部34の少なくとも1つの区域のオーバーハングの下にある。第2のスペーサ層30は、ゲート電極24とドレイン電極22との間、およびゲート電極24とソース電極20との間にある第1のスペーサ層28の少なくとも一部の上と、フィールドプレート32の少なくとも一部の上に形成される。少なくとも1つの導電性経路が、フィールドプレート32をソース電極20またはゲート電極24に電気的に接続する。 (もっと読む)


【課題】オン抵抗が小さく、またオフ容量が低い、デュアルゲートを備えた電界効果トランジスタを提供する。
【解決手段】第1又は第2のゲート電極8は、ソース電極4側又は前記ドレイン電極5側に延びる第1のひさし部61と、第2又は第1のゲート電極8側に延びる第2のひさし部62とを有し、第2のひさし部62の長さが第1のひさし部61の長さより短い。 (もっと読む)


【課題】p型不純物のドーピングおよびそのp型不純物の活性化を必要とすることなく、簡便かつ低コストでノーマリオフ型HFETを提供する。
【解決手段】ノーマリオフ型HFETは、厚さtのアンドープAlGa1−xN層(11)、この層(11)へ電気的に接続されかつ互いに隔てられて形成されたソース電極(21)とドレイン電極(22)、これらソース電極とドレイン電極との間でAlGa1−xN層上に形成された厚さtのアンドープAlGa1−yN層(12)、ソース電極とドレイン電極との間においてAlGa1−yN層の部分的領域上でメサ型に形成された厚さtのアンドープAlGa1−zN層(13)、およびAlGa1−zN層上に形成されたショットキーバリア型ゲート電極(23)を含み、y>x>zおよびt>t>tの条件を満たすことを特徴としている。 (もっと読む)


【課題】ショットキーバリアダイオードの逆リーク電流を低減させる。
【解決手段】禁制帯幅の異なるGaN膜3a、3bとバリア膜4a、4bとを交互に積層して形成したヘテロ接合体5a、5bを有する積層体6と、積層体6の一方の側壁にショットキー接続された第1電極8と、もう一方の側壁に接して形成された第2電極10とを有する半導体装置において、第1電極8とバリア膜4a、4bとの間に酸化膜12を設ける。これにより、バリア膜4a、4bの加工に起因してバリア膜4a、4bに残留する欠陥にを介して逆リーク電流が流れることを防ぐ。 (もっと読む)


【課題】 従来と同じチップ面積でありながら従来よりも素子抵抗が低く、順方向電流が大きくとれる窒化物半導体ダイオードを提供する。
【解決手段】 窒化物半導体上のショットキー電極形成領域において、ショットキー電極と窒化物半導体層の表面とが接する境界の長さの合計が、前記ショットキー電極形成領域の外周長よりも長くなるように形成する。また、10倍長いことが望ましい。例えば、ショットキー電極を同心環状とすることで、上記課題を解決することができる。 (もっと読む)


【課題】高輝度化を図ることができる半導体発光素子及びその製造方法を提供する。
【解決手段】実施形態に係る半導体発光素子は、構造体と、第1電極層と、電極層と、無機膜と、を備える。構造体は、第1導電形の第1半導体層と、第2導電形の第2半導体層と、第1半導体層と第2半導体層との間に設けられた発光層と、を有する。電極層は、構造体の第2半導体層の側に設けられる。電極層は、金属部と、複数の開口部と、を有する。金属部は、第1半導体層から第2半導体層に向かう方向に沿った厚さが10nm以上、100nm以下である。開口部は、前記方向に沿って金属部を貫通し、円相当直径が10nm以上、5μm以下である。無機膜は、前記方向に沿った厚さが20nm以上、200nm以下で、金属部の表面及び開口部の内面を覆うように設けられ、発光層から放出される光に対して透過性を有する。 (もっと読む)


【課題】高輝度、高効率、高信頼性を達成する半導体発光素子を提供する。
【解決手段】実施形態に係る半導体発光素子は、積層構造体と、電極と、を備える。積層構造体は、窒化物系半導体からなる第1導電形の第1半導体層と、窒化物系半導体からなる第2導電形の第2半導体層と、前記第1半導体層と前記第2半導体層との間に設けられた発光層と、を有する。電極は、第1金属層、第2金属層及び第3金属層を有する。第1金属層は、第2半導体層の発光層とは反対側に設けられ、銀または銀合金を含む。第2金属層は、第1金属層の第2半導体層とは反対側に設けられ、金、白金、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウムの少なくともいずれかの元素を含む。第3金属層は、第2金属層の第1金属層とは反対側に設けられる。第3金属層の第1半導体層から第2半導体層に向かう方向に沿った厚さは、第2金属層の前記方向に沿った厚さ以上である。 (もっと読む)


161 - 180 / 1,477