説明

Fターム[4M104BB01]の内容

半導体の電極 (138,591) | 電極材料 (41,517) | Si (2,965)

Fターム[4M104BB01]に分類される特許

141 - 160 / 2,965


【課題】王水を用いることなくニッケルプラチナ膜の未反応部分を選択的に除去しうるとともに、プラチナの残滓が半導体基板上に付着するのを防止しうる半導体装置の製造方法を提供する。
【解決手段】シリコン基板10上に、ゲート電極16と、ゲート電極16の両側のシリコン基板10内に形成されたソース/ドレイン拡散層24とを有するMOSトランジスタ26を形成し、シリコン基板10上に、ゲート電極16及びソース/ドレイン拡散層24を覆うようにNiPt膜28を形成し、熱処理を行うことにより、NiPt膜28とソース/ドレイン拡散層24の上部とを反応させ、ソース/ドレイン拡散層24上に、Ni(Pt)Si膜34a、34bを形成し、過酸化水素を含む71℃以上の薬液を用いて、NiPt膜28のうちの未反応の部分を選択的に除去するとともに、Ni(Pt)Si膜34a、34bの表面に酸化膜を形成する。 (もっと読む)


【課題】コンタクトホールの一部が素子分離領域上に配置された構造の半導体装置において、短絡及び接合漏れ電流の増大を抑制する。
【解決手段】半導体装置50は、半導体基板10における活性領域10aを取り囲むように形成された溝15bに素子分離絶縁膜15aが埋め込まれた素子分離領域15と、活性領域10aに形成された不純物領域26と、半導体基板10上を覆う層間絶縁膜28と、層間絶縁膜28を貫通し、活性領域10a上及び素子分離領域15上に跨って形成されたコンタクトプラグ34と、少なくともコンタクトプラグ34下方において、不純物領域26上に形成された金属シリサイド膜33とを備える。素子分離領域15は、コンタクトプラグ34の下方において、素子分離絶縁膜15と活性領域10aとの間に設けられた保護絶縁膜35を更に有する。 (もっと読む)


【課題】シンカー層を含むエピタキシャル層の厚さを増大させても耐圧性能の向上が可能な半導体装置及びその製造方法を提供する。
【解決手段】半導体装置1は、第1導電型の埋め込み拡散層16Na,16Nd,16Nbを有する支持基板10と、第1導電型と同じ導電型のシンカー層21Na,21Nbを有するエピタキシャル層20と、シンカー層21Na,21Nbから離れた領域でエピタキシャル層20上に形成された電極層31とを備える。支持基板10の上層部は、エピタキシャル層の上面に向けて突出する凸状部10Pa,10Pbを有し、シンカー層21Na,21Nbは、エピタキシャル層20の上面近傍から凸状部10Pa,10Pbにおける埋め込み拡散層16Na,16Nbにまで延在する不純物拡散領域からなる。 (もっと読む)


【課題】本発明は、トレンチの設計自由度が損なわれることなく、プロセス条件に制約されることなく、電気的特性を向上することができる半導体装置を提供する。
【解決手段】半導体装置10は、第1の半導体領域1内のトレンチ15の底部に第4の半導体領域4を介して配設され、隣り合う同士において相互に離間され、第1の半導体領域1よりも高い不純物密度を有する第1の導電型の第5の半導体領域5を備える。 (もっと読む)


【課題】有機半導体層の形成位置について、別途精密な制御を必要とすることなく、高精細なパターニングが行われた有機半導体層を有する有機薄膜トランジスタ及びその製造方法を提供することにある。
【解決手段】ソース電極1、ドレイン電極2、ゲート電極3、有機半導体層4及びゲート絶縁膜5を備え前記ソース電極1及び前記ドレイン電極2の表面エネルギーが、いずれも30mN/m以下であることを特徴とする。 (もっと読む)


【課題】半導体集積回路の微細化に伴い非常に短くなったゲート長を有するトランジスタにおいて、ゲート絶縁膜におけるリーク電流の発生を抑制し、トランジスタとしての機能を高めることが可能な半導体装置を提供する。
【解決手段】主表面を有する半導体基板SUBと、半導体基板SUBの主表面に形成された1対のソース/ドレイン領域と、1対のソース/ドレイン領域に挟まれる領域上であって、主表面に接するように形成されたゲート絶縁膜AFEと、ゲート絶縁膜AFEの上面に接するように形成されたゲート電極POとを備える。上記1対のソース/ドレイン領域の一方から他方へ向かう方向のゲート電極POの長さは45nm未満である。ゲート絶縁膜AFEは反強誘電体膜を有する。 (もっと読む)


【課題】短チャネル効果を抑制させつつ微細化を行い、低消費電力化した半導体装置を提供する。
【解決手段】溝部および該溝部を挟んで形成された一対の低抵抗領域を有する半導体基板と、半導体基板上の第1のゲート絶縁膜と、第1のゲート絶縁膜を介し、溝部と重畳するゲート電極と、ゲート電極を覆って設けられた第2のゲート絶縁膜と、第2のゲート絶縁膜上の、溝部を挟んで設けられた一対の電極と、一対の電極と接する半導体膜と、を有し、一対の低抵抗領域の一方と、一対の電極の一方が電気的に接続されている積層されたトランジスタを形成し、一方はn型半導体からなるトランジスタであり、他方はp型半導体からなるトランジスタにより形成させることによって、相補型MOS回路を形成する。 (もっと読む)


【課題】電界効果型トランジスタと回生素子とを含み、優れたリカバリ特性によりスイッチング損失が低減された半導体装置を提供すること。
【解決手段】電界効果型トランジスタと回生素子とを含み、前記電界効果型トランジスタは、第1の導電型を有する第1の半導体層と、前記第1の半導体層の表面に配置された第2導電型を有する第2の半導体層と、前記第2の半導体層の表面に配置された前記第1導電型を有する第3の半導体層と、前記第1の半導体層と前記第2の半導体層と前記第3の半導体層とに隣接するように配置された絶縁膜を介して配置されたゲート電極と、第1の金属層と、第2の金属層と、を備え、前記回生素子は、前記第1の金属層と電気的に接続されるアノード端子と、前記第2の金属層と電気的に接続されるカソード端子と、を備えることを特徴とする半導体装置。 (もっと読む)


【課題】微細化及び高集積化を達成した酸化物半導体を用いた半導体装置において、安定した電気的特性を付与し、高信頼性化する。
【解決手段】酸化物半導体膜を含むトランジスタ(半導体装置)において、酸化物半導体膜を、絶縁層に設けられたトレンチ(溝)に設ける。トレンチは曲率半径が20nm以上60nm以下の曲面状の下端コーナ部を含み、酸化物半導体膜は、トレンチの底面、下端コーナ部、及び内壁面に接して設けられる。酸化物半導体膜は、少なくとも下端コーナ部において表面に概略垂直なc軸を有している結晶を含む酸化物半導体膜である。 (もっと読む)


【課題】半導体装置の信頼性を向上させる。
【解決手段】ゲート電極GE1,GE2、ソース・ドレイン用のn型半導体領域SD1及びp型半導体領域SD2を形成してから、半導体基板1上にNi−Pt合金膜を形成し、第1の熱処理を行って合金膜とゲート電極GE1,GE2、n型半導体領域SD1及びp型半導体領域SD2とを反応させることで、(Ni1−yPtSi相の金属シリサイド層13aを形成する。この際、Niの拡散係数よりもPtの拡散係数の方が大きくなる熱処理温度で、かつ、金属シリサイド層13a上に合金膜の未反応部分が残存するように、第1の熱処理を行う。その後、未反応の合金膜を除去してから、第2の熱処理を行って金属シリサイド層13aを更に反応させることで、Ni1−yPtSi相の金属シリサイド層13bを形成する。第2の熱処理の熱処理温度は580℃以上で、800℃以下とする。 (もっと読む)


【課題】微細化及び高集積化を達成した酸化物半導体を用いた半導体装置、及び半導体装置の作製工程において、安定した電気的特性を付与し、高信頼性化する。また、上記半導体装置の作製工程において、不良を抑制し、歩留まりよく作製する技術を提供する。
【解決手段】酸化物半導体層を含むトランジスタを有する半導体装置において、酸化物半導体膜を、絶縁層に設けられたトレンチに設ける。トレンチは下端コーナ部及び曲率半径が20nm以上60nm以下の曲面状の上端コーナ部を含み、酸化物半導体膜は、トレンチの底面、下端コーナ部、上端コーナ部、及び内壁面に接して設けられる。酸化物半導体膜は、少なくとも上端コーナ部において表面に概略垂直なc軸を有している結晶を含む酸化物半導体膜である。 (もっと読む)


【課題】信頼性の高い半導体装置を提供する。また、不良を抑制しつつ微細化を達成した半導体装置を提供する。
【解決手段】トレンチを有する絶縁層に接して、ソース領域またはドレイン領域として機能する領域の膜厚が、チャネル形成領域として機能する領域の膜厚よりも厚い酸化物半導体層を形成する。該酸化物半導体層を用いたトランジスタは、ソース抵抗またはドレイン抵抗を低減することができると共に、しきい値のバラツキ、電気特性の劣化、ノーマリーオン化を抑制することができ、信頼性の高いトランジスタとすることができる。 (もっと読む)


【課題】オン抵抗が低く、かつ、Vthが高い半導体装置を提供する。
【解決手段】基板102の上方に、III−V族化合物半導体で形成されたバックバリア層106と、バックバリア層106上に、バックバリア層106よりバンドギャップエネルギーが小さいIII−V族化合物半導体で形成され、バックバリア層106の上方の少なくとも一部に設けられたリセス部122において、他の部分より膜厚が薄いチャネル層108と、チャネル層108にオーミック接合された第1の電極116,118と、少なくともリセス部においてチャネル層の上方に形成された第2の電極120と、を備える半導体装置を提供する。 (もっと読む)


【課題】逆方向リーク電流および順方向電圧を低減することができる半導体装置を提供すること。
【解決手段】表面12および裏面11を有し、表面12側に側壁22および底壁20を有する台形トレンチ17が形成されたSiCエピタキシャル層6の表面12に接するように、アノード電極27をショットキー接合させる。また、各台形トレンチ17の底壁20のエッジ部24を、曲率半径Rが0.01L<R<10L・・・(1)(式(1)において、Lはトレンチ17の幅方向に沿って対向するエッジ部24間の直線距離を示している。)を満たすように、台形トレンチ17の外方へ向かって湾曲する形状に形成する。 (もっと読む)


【課題】良好なオン特性を維持したまま、逆方向バイアスに対するリーク電流を低減した半導体デバイスを得る。
【解決手段】窒化物系化合物半導体からなるチャネル形成層と、チャネル形成層上に設けられ、第1の窒化物系化合物半導体からなる第1の半導体層、および、第2の窒化物系化合物半導体からなる第2の半導体層を有する疑似混晶からなる疑似混晶層と、疑似混晶層上に設けられ、窒化物系化合物半導体からなり、チャネル形成層の多数キャリアと反対の導電型を有する導電半導体層と、導電半導体層に接する第1の電極と、チャネル形成層に電気的に接続された第2の電極と、を備える半導体デバイスを提供する。 (もっと読む)


【課題】セル領域が接する平行トレンチ部分と接しない平行トレンチ部分の表面間隔が異なるトレンチ表面パターンを有していても、耐圧低下がなく、低オン電圧が得られるトレンチ絶縁ゲート型半導体装置を提供すること。
【解決手段】トレンチ9の表面間隔の異なる平行トレンチ部分9a同士は斜行トレンチ部分9bによって交差すること無く連結されるトレンチ表面パターンを備え、前記平行トレンチ部分9aの側壁面の面方位が、前記主面の面方位(100)と直交する等価な面方位{100}であるトレンチ絶縁ゲート型半導体装置。 (もっと読む)


【課題】半導体基板の表面に形成されている第1主電極領域と第2主電極領域を隔てている半導体領域によって、第1主電極領域と第2主電極領域の間に大きな電圧が印加されている状態に維持する場合、半導体基板の表面において電界集中が発生し、耐圧が低下しやすい。そこでフィールド絶縁膜の表面に、一端が第1主電極領域に導通しているとともに他端が第2主電極領域に導通している螺旋形状のフィールドプレートを設けて半導体基板表面の電界集中を緩和する。それでも、フィールドプレートの電位分布と半導体基板表面の電位分布が一致しないために、フィールドプレートによる耐圧向上効果が低い。
【解決手段】フィールドプレートを、外端に接近するにつれて線間間隔が拡大する対数螺旋形状に形成する。フィールドプレートの電位分布と半導体基板表面の電位分布がよく一致するので、フィールドプレートによる耐圧向上効果が増大する。 (もっと読む)


【課題】貴金属粒子の残留を抑えながら、基板上に貴金属含有シリサイド膜を生産性良く形成することが可能な半導体装置の製造方法を提供する。
【解決手段】半導体装置の製造方法は、基板1上、又は基板1上の導電膜50上に、貴金属を含む金属膜を形成する工程(a)と、基板1に熱処理を加えて金属膜とシリコンとを反応させ、基板1上又は導電膜50上に貴金属を含む金属シリサイド膜11a、11bを形成する工程(b)と、工程(b)の後、金属膜のうち未反応の金属を第1の薬液を用いて溶解するとともに、金属シリサイド膜11a、11bの上面上に酸化膜12を形成する工程(c)と、工程(c)の後、第1の薬液と異なる第2の薬液を用いて基板1上及び導電膜上に残留する貴金属の表面に形成された第2の酸化膜14を除去する工程(d)と、工程(d)の後、第1及び第2の薬液と異なる第3の薬液を用いて残留する貴金属を溶解する工程(e)とを備えている。 (もっと読む)


【課題】 MOSFETのゲート電極を基板の周囲において引き出すゲート引き出し配線の引き出し部は、素子領域内と同等の効率で機能するMOSFETのトランジスタセルCを配置することができない非動作領域となる。つまり、ゲート引き出し配線を、例えばチップの4辺に沿って配置すると、非動作領域が増加し、素子領域の面積拡大や、チップ面積の縮小に限界があった。
【解決手段】 ゲート引き出し配線と、ゲート引き出し配線と保護ダイオードとを接続する導電体とを、チップの同一辺に沿って曲折しない一直線状に配置する。又これらの上に重畳して延在し、これらと保護ダイオードを接続する第1ゲート電極層の曲折部を1以下とする。更に保護ダイオードを導電体またはゲート引き出し配線と隣接して配置し、保護ダイオードの一部をゲートパッド部に近接して配置する。 (もっと読む)


【課題】選択的に窒化物膜を形成する。
【解決手段】処理容器2内に窒素含有ガスを供給し、処理容器2内の圧力を133Pa以上1333Pa以下の範囲内に設定して、処理容器2内に窒素含有プラズマを生成し、該窒素含有プラズマによって、シリコンを含有する第2の部分100Bの表面100Baを窒化させずに、タングステンを含有する第1の部分100Aの表面100Aaを選択的に窒化して、第1の部分100Aの表面100Aaに窒化タングステン膜107を形成する。 (もっと読む)


141 - 160 / 2,965