説明

Fターム[4M104BB04]の内容

半導体の電極 (138,591) | 電極材料 (41,517) | 遷移金属 (20,763)

Fターム[4M104BB04]の下位に属するFターム

Ni (2,151)
Pt (1,420)
Pd (977)
Ag (1,372)
Au (1,795)
高融点金属 (9,978)

Fターム[4M104BB04]に分類される特許

61 - 80 / 3,070


【課題】 優れた電気的特性を有するトップエミット型窒化物系発光素子を提供する。
【解決手段】 本発明は、トップエミット型窒化物系発光素子に関し、窒化物系発光素子は、n型クラッド層、活性層及びp型クラッド層が順次に積層されており、p型クラッド層上に形成された導電性ナノ相酸化物粒子と、p型クラッド層及び導電性ナノ相酸化物粒子層上に形成された透明導電性薄膜層と、を備え、透明導電性薄膜層は透明導電性素材で形成され、導電性ナノ相酸化物粒子は界面改質層が熱処理によってナノ相酸化物に分解されることにより形成される。このようなトップエミット型窒化物系発光素子によれば、p型クラッド層とのオーミック接触特性が改善され、発光素子のパッケージングの際に、ワイヤーボンディング効率及び収率を高めることができ、低い非接触抵抗及び優れた電流−電圧特性により素子の発光効率及び素子寿命を向上することができる。 (もっと読む)


【課題】酸化物半導体を用いた半導体装置において、電気特性の安定した半導体装置を提供する。とくに、酸化物半導体を用いた半導体装置において、より優れたゲート絶縁膜を有する半導体装置を提供する。また、当該半導体装置の作製方法を提供する。
【解決手段】ゲート電極と、ゲート電極上に形成されたゲート絶縁膜と、ゲート絶縁膜上に形成された酸化物半導体膜と、酸化物半導体膜と接して形成されたソース電極、及びドレイン電極と、を有し、ゲート絶縁膜は、少なくとも酸化窒化シリコン膜と、酸化窒化シリコン膜上に形成された酸素放出型の酸化膜と、により構成され、酸素放出型の酸化膜上に酸化物半導体膜が接して形成される。 (もっと読む)


【課題】チャネル長Lが短く微細化が可能な、酸化物半導体を用いたトップゲート型の半
導体素子を提供することを課題とする。また、該半導体素子の作製方法を提供することを
課題とする。
【解決手段】絶縁表面上に酸化物半導体層と、酸化物半導体層上にソース電極層及びドレ
イン電極層と、酸化物半導体層、前記ソース電極層、及び前記ドレイン電極層上にゲート
絶縁層と、ゲート絶縁層上にゲート電極層とを有し、ソース電極層及びドレイン電極層は
側壁を有し、側壁は前記酸化物半導体層の上面と接する半導体素子である。 (もっと読む)


【課題】一定のドレイン電圧及びゲート電圧に対して得られるドレイン電流を増大することの出来る半導体装置の製造方法を提供する。
【解決手段】チャンネル領域と、ソース領域及びドレイン領域と、前記ソース領域及びドレイン領域にそれぞれ電気的に接続する合計二つの第1の電極と、前記チャンネル領域上にゲート絶縁膜を介して設けられた第2の電極とを備えた半導体装置の製造に際し、前記ゲート絶縁膜を、酸素の含有量を1ppb以下にした水素添加超純水にIPAを添加した洗浄液を用いて、酸素含有量1ppb以下の窒素雰囲気でしかも遮光した状態で表面の洗浄を行ない、かつ等方性酸化または窒化で形成することにより、前記チャンネル領域と前記ゲート絶縁膜との界面の平坦度を、前記ソース領域から前記ドレイン領域に向かう方向での長さ2nmにおけるピーク・トゥ・バレイ値が0.3nm以下となるようにするとともに、前記第1の電極から前記チャンネル領域までの抵抗率を4Ω・μm以下とした。 (もっと読む)


【課題】酸化物半導体を用いたパワー絶縁ゲート型電界効果トランジスタ(パワーMISFET)を提供する。
【解決手段】半導体層103を挟んでゲート電極105とドレイン電極102を形成し、ゲート電極105の側面に半導体層109を形成し、ゲート電極105の頂上部と重なる部分で、半導体層109とソース電極112が接する構造を有する。このようなパワーMISFETのドレイン電極とソース電極の間に500V以上の電源と負荷を直列に接続し、ゲート電極105に制御用の信号を入力して使用する。 (もっと読む)


【課題】良好な電気的特性が得られる不揮発性記憶素子及びその製造方法を提供する。
【解決手段】第1の配線103と、第1の配線103上に形成され、第1の配線103に接続される第1のプラグ107及び第2のプラグ108と、第1電極109、第2電極113、及び抵抗変化層112を有し、第1のプラグ107上に形成され、第1電極109が第1のプラグ107と電気的に接続されている抵抗変化素子114と、抵抗変化素子114上に形成され、第2電極113と電気的に接続されている第2の配線119と、第2のプラグ108上に形成され、第2のプラグ108と電気的に接続されている第3の配線121とを備え、第1のプラグ107の上面と第2のプラグ108の上面とが略同一平面内に形成され、かつ第2の配線119の上面と第3の配線121の上面とが略同一平面内に形成されている。 (もっと読む)


【課題】電気特性が良好で信頼性の高いトランジスタ及び当該トランジスタを用いた表示装置を提供する。
【解決手段】チャネル領域に酸化物半導体を用いたボトムゲート型のトランジスタであって、加熱処理により脱水化または脱水素化された酸化物半導体層を活性層に用い、該活性層は、微結晶化した表層部の第1の領域と、その他の部分の第2の領域で形成されている。この様な構成をした酸化物半導体層を用いることにより、表層部からの水分の再侵入や酸素の脱離によるn型化や寄生チャネル発生の抑制、及びソース電極及びドレイン電極との接触抵抗を下げることができる。 (もっと読む)


【課題】ドレイン配線電極に起因する電流コラプス現象への影響が抑制され、且つ耐圧が向上された窒化物半導体装置を提供する。
【解決手段】窒化物半導体からなるデバイス層と、デバイス層上に互いに離間して配置されたソース電極及びドレイン電極と、ソース電極とドレイン電極間でデバイス層上に配置されたゲート電極と、デバイス層上に配置された層間絶縁膜と、ドレイン電極とゲート電極間において層間絶縁膜を介してデバイス層と対向して配置され、ドレイン電極と電気的に接続されたドレイン配線電極と、ゲート電極とドレイン電極間においてデバイス層上に層間絶縁膜を介してデバイス層と対向して配置されたドレイン電極に比べて低電位側のフィールドプレートとを備え、ドレイン配線電極下方の層間絶縁膜の膜厚が、フィールドプレート下方の層間絶縁膜の膜厚よりも厚い。 (もっと読む)


【課題】安定したスイッチング動作を低コストで実行する抵抗変化型不揮発性記憶装置を提供する。
【解決手段】抵抗変化型不揮発性記憶装置は、第1配線3と、第1配線3上に形成された層間絶縁層53と、層間絶縁膜53上に形成された第2配線6と、第1配線3と第2配線6との間に形成された抵抗変化型素子11とを具備する。層間絶縁層53は、第1配線3と第2配線6とに挟まれるように形成され、第1配線3の幅以下の幅を有するホール9を備える。抵抗変化型素子11は、第1配線3と接して、ホール9の底部に形成された下部電極13と、下部電極13上に形成された抵抗変化層12と、抵抗変化層12上に形成された上部電極11とを備える。下部電極13、抵抗変化層12及び上部電極11は、ホール9の内部に形成される。第1配線3は銅を含み、下部電極13、13aはルテニウム、タングステン、コバルト、白金、金、ロジウム、イリジウム及びパラジウムからなる群から選択される少なくとも一種の金属を含んでいる。 (もっと読む)


【課題】異なる特性の半導体素子を一体に有しつつ、高集積化が実現可能な、新たな構成の半導体装置を提供することを目的の一とする。
【解決手段】第1の半導体材料が用いられた第1のチャネル形成領域と、第1のゲート電極と、を含む第1のトランジスタと、第1のゲート電極と一体に設けられた第2のソース電極および第2のドレイン電極の一方と、第2の半導体材料が用いられ、第2のソース電極および第2のドレイン電極と電気的に接続された第2のチャネル形成領域と、を含む第2のトランジスタと、を備えた半導体装置である。 (もっと読む)


【課題】貫通する開口を備える保護層を基板上に形成し、さらにこの開口の中にゲート電極を形成することによって、トランジスタを作製する。
【解決手段】ゲート電極の第1の部分は、開口の外側に存在する保護層の表面部分で横方向に延在し、ゲート電極の第2の部分は、保護層から間隔を空けて配置され、第1の部分を越えて横方向に延在する。関連したデバイスおよび作製方法も述べられる。 (もっと読む)


【課題】静電チャックの基板吸着面にパーティクルが付着することを抑制できるようにした多元スパッタリング装置を提供する。
【解決手段】本発明の多元スパッタリング装置SMは、真空チャンバ1と、この真空チャンバの底部に配置され、上面に基板Wを吸着する静電チャック3を有するステージ2と、この真空チャンバの上部に、静電チャックで吸着された基板に対してスパッタ粒子を斜入射させるように配置された少なくとも2個のスパッタリングカソードCと、各スパッタリングカソードと基板との間を選択的に遮蔽する遮蔽手段4とを備える。静電チャックの上面が露出している場合に、当該静電チャックの上面を選択的に覆う保護板5を更に備える。 (もっと読む)


【課題】SiCOH膜からなる層間絶縁膜に形成された埋め込み用の凹部に銅材を埋め込んで導電路を形成するにあたり、導電路の抵抗を低くすること。
【解決手段】SiCOH膜にプラズマにより凹部を形成すると表面が疎水性になる。このSiCOH膜に水素ガスのリモートプラズマを供給し、Hラジカル及びHイオンにより凹部の表面を親水性に改質する。またプラズマに代えて過酸化水素水を供給してもよく、この場合表面にOH基が形成される。次いで例えばRu(CO)12ガスとCOガスとを用いてCVDによりRu膜4を成膜し、その後銅材5を埋め込み、CMP処理をして上層側の配線構造を形成する。また改質にあたって、グリム、DMEDAなどを用いてもよい。 (もっと読む)


【課題】低いコンタクト抵抗、高い移動度を達成し得る半導体装置を提供する。
【解決手段】ゲート電極13、ゲート絶縁層14、有機半導体材料層から構成されたチャネル形成領域16、及び、金属から成るソース/ドレイン電極15を有する電界効果型トランジスタから成る半導体装置において、チャネル形成領域16を構成する有機半導体材料層と接するソース/ドレイン電極15の部分は、電極被覆材料21で被覆されており、電極被覆材料21は、金属イオンと結合し得る官能基、及び、金属から成るソース/ドレイン電極15と結合する官能基を有する有機分子から成る。 (もっと読む)


【課題】higher-k材料であるチタン酸化膜の半導体基板との界面を安定化でき、さらなる微細化に対応できるゲート構造を実現できるようにする。
【解決手段】半導体装置は、半導体基板1の上に形成されたゲート絶縁膜と、該ゲート絶縁膜の上に形成されたゲート電極とを備えている。ゲート絶縁膜は、アナターゼ型酸化チタンを主成分とする高誘電率絶縁膜5であり、ゲート電極は、第1の金属膜6又は第2の金属膜8を含む導電膜から構成されている。 (もっと読む)


【課題】 チャンネルドーピングあるいは複雑なゲート電極パターン化の必要性なしに、複数のトランジスタが多閾値電圧を有する半導体装置を提供する。
【解決手段】 半導体装置及びその製造方法において、第1トランジスタは、第1材料で形成された下層と第2材料で形成された上層とを含むゲートスタックを有する。第2トランジスタは、第3材料で形成された下層と第2材料で形成された上層とを含むゲートスタックを有する。第3トランジスタは、第1材料で形成された下層と第4材料で形成された上層とを含むゲートスタックを有する。第4トランジスタは、第3材料で形成された下層と第4材料で形成された上層とを含むゲートスタックを有する。第1材料乃至前記第4材料の仕事関数は互いに異なる。第1トランジスタ乃至第4トランジスタは、互いに異なる閾値電圧を有する。 (もっと読む)


【課題】酸化物半導体層を用いる薄膜トランジスタにおいて、酸化物半導体層と電気的に接続するソース電極層またはドレイン電極層との接触抵抗の低減を図る。
【解決手段】ソース電極層またはドレイン電極層を2層以上の積層構造とし、その積層のうち、酸化物半導体層と接する一層104a、104bを薄いインジウム層または薄いインジウム合金層とする。なお、酸化物半導体層103は、インジウムを含む。二層目以降のソース電極層105aまたはドレイン電極層105bの材料は、Al、Cr、Cu、Ta、Ti、Mo、Wから選ばれた元素、または上述した元素を成分とする合金か、上述した元素を組み合わせた合金等を用いる。 (もっと読む)


【課題】角形基板のめっき処理にカップ方式のめっき法を使っても、均一なめっき厚さを得ることができるめっき装置を提供する。
【解決手段】本発明のめっき装置100は、底面にめっき液噴出口130が形成されためっき槽110と、めっき液噴出口130の上部に位置し、スリット155が形成された陽極部150と、めっき槽110の上部に位置する陰極部120とを含む。 (もっと読む)


【課題】動作特性に優れ低温で製造可能な酸化物半導体を用いた表示装置の特性を活かす、適切な構成を備えた保護回路等を提供する。
【解決手段】ゲート電極101を被覆するゲート絶縁層102と、ゲート絶縁層102上においてゲート電極101と重畳する第1酸化物半導体層103と、第1酸化物半導体層103上においてゲート電極と端部が重畳し、導電層105aと第2酸化物半導体層104aが積層された一対の第1配線層38及び第2配線層39とを有する非線形素子170aを用いて保護回路を構成する。ゲート絶縁層102上において物性の異なる酸化物半導体層同士の接合を形成することで、ショットキー接合に比べて安定動作をさせることが可能となり、接合リークが低減し、非線形素子170aの特性を向上させることができる。 (もっと読む)


【課題】ビアホール、コンタクトホール、スルーホール等の穴部の内面のみを改質して、穴部に導体を形成する。
【解決手段】基板100には、上面100aの開口から下面100bの開口に向かうにつれて直径が増加しているビアホール110が設けられている。基板100の下面には、表面に微小な凹凸形状が形成された光反射用基板46が配置される。照射部40からビアホール110にレーザ光Lが照射されると、ビアホール110の開口部から入射したレーザ光は、基板100の下面に配置された光反射用基板46の表面によって散乱反射される。このレーザ光Lの反射光は、ビアホール110の内面110aに照射され、内面110aが表面改質される。 (もっと読む)


61 - 80 / 3,070