説明

Fターム[4M104BB32]の内容

半導体の電極 (138,591) | 電極材料 (41,517) | 高融点金属窒化物 (3,639) | TaN (978)

Fターム[4M104BB32]に分類される特許

161 - 180 / 978


【課題】 各膜の組成が異なる積層膜を、極めて効率よく、しかも酸化等の不都合が生じることなく形成することができる積層膜の形成方法を提供すること。
【解決手段】 処理室内に基板1を配置し、処理室に、少なくとも、金属カルボニルを含有する原料を含む成膜原料を導入し、CVDにより基板1上に金属カルボニル中の金属を含む複数の膜6a、6bを含む積層膜を形成する積層膜の形成方法であって、上記積層膜に含まれる膜は、同一処理室内で、原料種および/または成膜条件を異ならせて連続成膜され、上記膜の組成が異なる積層膜を形成する。 (もっと読む)


【課題】ゲート電極抵抗の増大や工程数の増加を招くことなく、シリコン混晶層を用いた歪技術により、半導体装置の高性能化を実現する。
【解決手段】半導体基板100における第1のゲート電極106Aから見て第1の絶縁性サイドウォールスペーサ111Aの外側に第1のソースドレイン領域114Aを形成する。その後、半導体基板100における第2のゲート電極106Bから見て第2の絶縁性サイドウォールスペーサ111Bの外側にリセス部119を形成すると共に、第2のゲート電極106Bを部分的に除去する。その後、リセス部109内に、第2のソースドレイン領域114Bとなるシリコン混晶層120を形成する。 (もっと読む)


【課題】小数キャリアが注入される電圧を低下させ、十分なサージ電流耐性を有するワイドバンドギャップ半導体を用いた高耐圧半導体整流装置を提供する。
【解決手段】第1導電型のワイドバンドギャップ半導体基板と、ワイドバンドギャップ半導体基板の上面に形成され、不純物濃度が1E+14atoms/cm以上5E+16atoms/cm以下、厚さが20μm以上の第1導電型のワイドバンドギャップ半導体層と、ワイドバンドギャップ半導体層表面に形成される第1導電型の第1のワイドバンドギャップ半導体領域と、第1のワイドバンドギャップ半導体領域に挟まれて形成される第2導電型の第2のワイドバンドギャップ半導体領域と、第1および第2のワイドバンドギャップ半導体領域上に形成される第1の電極と、ワイドバンドギャップ半導体基板の下面に形成される第2の電極と、を備え、第2のワイドバンドギャップ半導体領域の幅が15μm以上であることを特徴とする半導体整流装置。 (もっと読む)


【課題】CMPによるダミーゲート電極の頭出し工程およびCMPによるメタルゲート電極の形成工程を回避できる製造方法を提供する。
【解決手段】シリサイド膜24S,24D上に選択的に、シリコン膜25S,25Dを形成する工程と、側壁絶縁膜23WA,23WBの間にシリコン基板の表面を露出する凹部23Vを形成する工程と、側壁絶縁膜23WA,23WBの表面および露出されたシリコン基板表面を連続して覆うように、誘電体膜を形成する工程と、シリコン基板上に金属または導電性金属窒化物を含む導電膜を、凹部23Vに誘電体膜を介して充填するように形成する工程と、導電膜をエッチバックし、側壁絶縁膜23WA,23WBの間において凹部23Vを誘電体膜を介して充填するゲート電極を形成する工程と、を含む。 (もっと読む)


サブストレートとサブストレートの上に形成された半導体ボディを有する半導体デバイスである。半導体ボディはソース領域とドレイン領域を有している。ソース領域、ドレイン領域、またはその組み合わせは、第一の側面、第二の側面、及び上面を有している。第一の側面は第二の側面と向かい合っており、上面は底面と向かい合っている。ソース領域、ドレイン領域、またはその組み合わせは、実質的に全ての第一の側面の上に、実質的に全ての第二の側面の上に、そして上面の上に、形成されたメタル層を有している。
(もっと読む)


III-V族半導体装置における導電性の改善について示した。第1の改良は、チャネル層とは幅の異なるバリア層を有することである。第2の改良は、金属/Si、Ge、またはシリコン-ゲルマニウム/III-Vスタックの熱処理により、Siおよび/またはゲルマニウムドープIII-V層に、金属-シリコン、金属-ゲルマニウム、または金属-シリコンゲルマニウム層を形成することである。次に、金属層が除去され、金属-シリコン、金属-ゲルマニウム、または金属シリコンゲルマニウム層上に、ソース/ドレイン電極が形成される。第3の改良は、III-Vチャネル層上に、IV族元素および/またはVI族元素の層を形成し、熱処理し、III-Vチャネル層に、IV族および/またはVI族化学種をドープすることである。第4の改良は、III-V装置のアクセス領域に形成された、パッシベーション層および/またはダイポール層である。
(もっと読む)


【課題】低コストで必要な仕事関数及び耐酸化性を有する金属膜を備えた半導体装置を提供する。
【解決手段】基板上に形成された絶縁膜と、絶縁膜に隣接して設けられた金属膜と、を有し、金属膜は、第1の金属膜と第2の金属膜との積層構造を有しており、第1の金属膜は第2の金属膜よりも耐酸化性が高い物質で構成され、第2の金属膜は4.8eVよりも高い仕事関数を有する第1の金属膜とは異なる物質で構成され、第1の金属膜は第2の金属膜と絶縁膜との間に設けられている。 (もっと読む)


【課題】許容可能な拡散バリア特性と基板への密着性を耐熱性金属窒化物が有するように、基板上への窒化チタンなどの耐熱性金属窒化物膜の形成を提供する。
【解決手段】材料の層が、ウェハ上に部分的に形成された集積回路内の基板上に形成される。基板はプラズマアニールを受け、その間に基板はイオンでボンバードされる(工程300)。プラズマアニールは、エネルギーを注入された窒素含有ガスから生成されたプラズマへ基板を曝すことにより実行できる。基板がプラズマアニールされた後、耐熱性金属窒化物の層が基板上に堆積される(工程301)。耐熱性金属窒化物の層は、次に、第1セットのイオンでボンバードされる。第1セットのイオンによる耐熱性金属のこのボンバードは、プラズマアニールを実行することにより達成できる。耐熱性金属窒化物は、更に、第2セットのイオンによりボンバードされる(工程302)。 (もっと読む)


【課題】最近の多層メタルスパッタリング成膜プロセスにおいては、従来のマルチチャンバ型の装置に代わって、単一チャンバ&マルチ成膜サイト型の装置が広く使用されるようになっている。しかし、本願発明者が検討したところによると、このような単一チャンバ&マルチ成膜サイト型スパッタリング成膜装置は、磁性メタル膜と非磁性メタル膜を積層形成する場合は、被処理ウエハを別の成膜サイトに移送して成膜する必要があり、スループットを大きく低下させていることが明らかとなった。
【解決手段】本願発明は、単一チャンバ&マルチ成膜サイト型多層スパッタリング成膜装置を用いた半導体装置の製造方法において、少なくとも一つの成膜サイトにおいて、磁性および非磁性ターゲットの両方を切り替えて用い、磁性および非磁性膜の両方の膜を成膜するものである。 (もっと読む)


【課題】TCR値が小さく、実用上必要な膜厚を確保できるTaN膜からなる薄膜抵抗体を、その配線形成時のTaN膜の損傷を防止して形成できる半導体装置の製造方法を提供する。
【解決手段】半導体素子が形成された半導体基板上に第1層間絶縁膜を形成し、基板温度を常温から400℃までの温度に設定し、反応ガス中の窒素ガス分圧比を3乃至10%として、第1スパッタリングにより、前記第1層間絶縁膜上に窒化タンタル膜を形成する。その後、第1層間絶縁膜上に形成した第2層間絶縁膜に窒化タンタル膜に至るビアホールを湿式エッチングにより形成し、第2スパッタリングにより金属膜を堆積して前記ビアホール内に金属膜を形成し、前記窒化タンタル膜に接続するビアを設ける。 (もっと読む)


【課題】電気特性及び信頼性の高い薄膜トランジスタを有する半導体装置、及び該半導体
装置を量産高く作製する方法を提案することを課題とする。
【解決手段】半導体層としてIn、Ga、及びZnを含む酸化物半導体膜を用い、半導体
層とソース電極層及びドレイン電極層との間に金属酸化物層でなるバッファ層が設けられ
た逆スタガ型(ボトムゲート構造)の薄膜トランジスタを含むことを要旨とする。ソース
電極層及びドレイン電極層と半導体層との間に、バッファ層として金属酸化物層を意図的
に設けることによってオーミック性のコンタクトを形成する。 (もっと読む)


【課題】高い信頼性を得ることができる化合物半導体装置及びその製造方法を提供する。
【解決手段】窒化物半導体層1上に、高融点金属を含む第1の導電膜3を形成する。第1の熱処理を行うことにより、第1の導電膜3と窒化物半導体層1とを反応させて高融点金属の窒化物層4を形成すると共に、窒化物半導体層1の表面に窒素空孔を生じさせる。第1の導電膜2上に、Alを含有する第2の導電膜3を形成する。第2の熱処理を行うことにより、第2の導電膜3中のAl原子を窒化物半導体層1の表面まで拡散させる。 (もっと読む)


【課題】高耐圧半導体素子の層間絶縁膜とその上層に形成される金属膜との密着性を向上させた高耐圧半導体素子の製造方法及びその構造を提供する。
【解決手段】半導体基板1の表面にMOS部2を形成し、このMOS部2を有する前記半導体基板上に層間絶縁膜3を形成し、前記層間絶縁膜上にシリコン膜4を形成し、所定温度の酸化雰囲気内で、成膜した前記シリコン膜4を酸化させて酸化シリコン膜5を形成し、前記酸化シリコン膜5及び前記層間絶縁膜3を貫通する開口を形成し、前記酸化シリコン膜上と前記開口内に金属膜6を被着させ、かつ該金属膜6の上層に電極膜7を形成する、各工程を有する。 (もっと読む)


【課題】SiGe等の半導体膜が形成された領域と、酸化シリコン膜から成るゲート絶縁膜が形成された領域とが同一基板上に形成される際に、ゲート絶縁膜を精度良く形成する。
【解決手段】基板10を熱酸化することにより、第1素子領域101及び第2素子領域201に、第1ゲート絶縁膜110及び第2ゲート絶縁膜210を形成し、かつ第3素子領域301及び第4素子領域401それぞれに位置する基板10に熱酸化膜を形成する。次いで、第4素子領域401に位置する熱酸化膜を除去する。次いで、第4素子領域401に位置する基板10上に半導体膜414を成膜する。次いで、第3素子領域301に位置する熱酸化膜を除去する。次いで、第4素子領域401に位置する半導体膜414上、及び第3素子領域301に位置する基板10上に第3ゲート絶縁膜310及び第4ゲート絶縁膜410を形成する。 (もっと読む)


【課題】安定した電気特性を持つ、酸化物半導体を用いた薄膜トランジスタを有する、信頼性の高い半導体装置の作製方法の提供を目的の一とする。
【解決手段】ゲート絶縁膜を間に挟んでゲート電極と重なっている酸化物半導体膜と、酸化物半導体膜に接するソース電極またはドレイン電極とを有しており、ソース電極またはドレイン電極は、チタン、マグネシウム、イットリウム、アルミニウム、タングステン、モリブデンなどの電気陰性度が低い金属のいずれか一つまたは複数を含む混合物、金属化合物または合金を含んでおり、ソース電極またはドレイン電極中の水素濃度は酸化物半導体膜中の水素濃度の1.2倍以上、好ましくは5倍以上である。 (もっと読む)


【課題】ゲートリーク電流を抑制する、窒化物半導体からなるリセスゲート構造のヘテロ接合FET及びその製造方法を提供することを目的とする。
【解決手段】本発明のヘテロ接合電界効果トランジスタは、窒化物半導体からなるヘテロ接合電界効果トランジスタであって、バリア層4とバリア層4の上に形成されたキャップ層5を含む半導体層と、半導体層に下部を埋没するようにして半導体層上に設けられたゲート電極9と、ゲート電極9の側面と半導体層の間に設けられた絶縁膜10と、を備え、ゲート電極9は、下面のみが半導体層と接触することを特徴とする。 (もっと読む)


【課題】信頼性の高い半導体集積回路装置の製造プロセスを提供する。
【解決手段】銅ダマシン配線プロセスのバリアメタル膜のタンタル系積層膜に関し、スパッタリング成膜チャンバ内のシールド内面に、比較的薄い窒化タンタル膜およびタンタル膜が交互に成膜されるが、この連続成膜プロセスを断続的に繰り返すと、膜の内部応力により剥がれて、異物やパーティクルの原因となる。この異物やパーティクルの防止のため、繰り返し、成膜するに際して、所定の間隔を置いて、厚い膜厚を有する異物防止用タンタル膜をチャンバの実質的な内壁に成膜する工程を設ける。 (もっと読む)


【課題】酸化亜鉛に代表される酸化物半導体膜を用いて薄膜トランジスタを形成すること
で、作製プロセスを複雑化することなく、尚かつコストを抑えることができる半導体装置
及びその作製方法を提供することを目的とする。
【解決手段】基板上にゲート電極を形成し、ゲート電極を覆ってゲート絶縁膜を形成し、
ゲート絶縁膜上に酸化物半導体膜を形成し、酸化物半導体膜上に第1の導電膜及び第2の
導電膜を形成する半導体装置であって、酸化物半導体膜は、チャネル形成領域において少
なくとも結晶化した領域を有する。 (もっと読む)


【課題】フィン電界効果トランジスタのソース/ドレイン構造を提供する。
【解決手段】基板上のフィンチャネル本体110a、110b、フィンチャネル本体110a、110b、上に配置されたゲート電極115、およびフィンチャネル本体110a、110b、に隣接して配置され、どのフィン構造も実質的に含まない、少なくとも1つのソース/ドレイン(S/D)領域120a,120b及び125a,125bを含むフィン電界効果トランジスタ(FinFET)。 (もっと読む)


【課題】デュアルメタルゲートプロセスを用いることなく、p型MISトランジスタ及びn型MISトランジスタ双方の特性を向上した半導体装置を実現できるようにする。
【解決手段】半導体装置は、p型半導体領域10Aの上に順次形成された第1の界面シリコン酸化膜105、アルミニウムを含む第1のゲート絶縁膜106A及び第1のゲート電極119Aと、n型半導体領域10Bの上に順次形成された第2の界面シリコン酸化膜105、実効仕事関数を低下させる効果を有する元素を含む第2のゲート絶縁膜106B及び第2のゲート電極119Aとを備えている。第1のゲート絶縁膜106Aの上部におけるアルミニウムの濃度は、1×1020/cm3以上である。第2のゲート絶縁膜106Bの上部におけるアルミニウムの濃度は、1×1019/cm3以下である。第1の界面シリコン酸化膜105の膜厚と第2の界面シリコン酸化膜105の膜厚との差は0.2nm以下である。 (もっと読む)


161 - 180 / 978