説明

Fターム[4M104FF18]の内容

半導体の電極 (138,591) | 構造 (12,435) | 多層構造 (5,737) | バリア層を含むもの (2,155) | 金属化合物層 (1,113)

Fターム[4M104FF18]に分類される特許

121 - 140 / 1,113


【課題】貫通電極の形成に時間を要さず、貫通電極内でのボイドの発生を抑制できる半導体装置、およびこの半導体装置の製造方法を提供すること。
【解決手段】半導体装置1は、孔111が形成された絶縁性あるいは半導体の層11と、層11の孔111内に設けられた貫通電極12と、を備える。貫通電極12は、シード層121と、めっき層122と、を備える。シード層121は、孔111の底面111Aを覆う。また、シード層121は、孔111の側面111Bのうち、孔111の開口から、孔111の開口と孔111の底面111Aとの間の所定の位置までの第1の領域を未被覆とし、この第1の領域(未被覆領域)111B1を除いた第二の領域を被覆している。めっき層122は、シード層121と、未被覆領域111B1の少なくとも一部を覆う。 (もっと読む)


【課題】電気特性の変動が生じにくく、且つ電気特性の良好な半導体装置、およびその作製方法を提供することである。
【解決手段】基板上に下地絶縁膜を形成し、下地絶縁膜上に第1の酸化物半導体膜を形成し、第1の酸化物半導体膜を形成した後、第1の加熱処理を行って第2の酸化物半導体膜を形成した後、選択的にエッチングして、第3の酸化物半導体膜を形成し、第1の絶縁膜および第3の酸化物半導体膜上に絶縁膜を形成し、第3の酸化物半導体膜の表面が露出するように絶縁膜の表面を研磨して、少なくとも第3の酸化物半導体膜の側面に接するサイドウォール絶縁膜を形成した後、サイドウォール絶縁膜および第3の酸化物半導体膜上にソース電極およびドレイン電極を形成し、ゲート絶縁膜およびゲート電極を形成する。 (もっと読む)


【課題】めっき膜厚の制御を精度よく行う。
【解決手段】半導体基板上に形成された絶縁膜に設けられた複数の凹部をめっき処理により導電性材料で埋め込むめっき工程を含む半導体装置の製造方法において、めっき工程は、複数の凹部のうち所定幅以下の微細な凹部が導電性材料で埋め込まれる際に、所定の第1の基準電流密度を半導体基板全面における各複数の凹部の側壁の面積を含む第1の表面積Sと各複数の凹部の側壁の面積を含まない第2の表面積Sとの表面積比Sr=S/Sに基づき補正した第1の電流密度でめっき処理を行う工程(S104)を含む。 (もっと読む)


【課題】占有面積が小さく、高集積化、大記憶容量化が可能な半導体装置を提供する。
【解決手段】第1の制御ゲート、第2の制御ゲート及び記憶ゲートを有するトランジスタを用いる。記憶ゲートを導電体化させ、該記憶ゲートに特定の電位を供給した後、少なくとも該記憶ゲートの一部を絶縁体化させて電位を保持させる。情報の書き込みは、第1及び第2の制御ゲートの電位を記憶ゲートを導電体化させる電位とし、記憶ゲートに記憶させる情報の電位を供給し、第1または第2の制御ゲートのうち少なくとも一方の電位を記憶ゲートを絶縁体化させる電位とすることで行う。情報の読み出しは、第2の制御ゲートの電位を記憶ゲートを絶縁体化させる電位とし、トランジスタのソースまたはドレインの一方と接続された配線に電位を供給し、その後、第1の制御ゲートに読み出し用の電位を供給し、ソースまたはドレインの他方と接続されたビット線の電位を検出することで行う。 (もっと読む)


【課題】微細なトレンチまたはホール等の凹部にボイドを発生させずに確実にCuを埋め込むことができ、かつ低抵抗のCu配線を形成すること。
【解決手段】ウエハWに形成されたトレンチ203を有する層間絶縁膜202において、トレンチ203の表面にバリア膜204を形成する工程と、バリア膜204の上にRu膜205を形成する工程と、Ru膜205の上に、加熱しつつ、PVDによりCuがマイグレーションするようにCu膜206を形成してトレンチ203を埋める工程とを有する。 (もっと読む)


【課題】信頼性を犠牲にすることなく、オン抵抗を低減することができるトレンチゲート型の半導体装置を提供する。
【解決手段】半導体装置1は、ドレイン領域21と、ドレイン領域21に積層されたチャネル領域20と、チャネル領域20に積層されたソース領域16とを有するシリコン半導体層からなる活性領域30を含む。半導体装置1は、さらに、ソース領域16からチャネル領域20を貫通してドレイン領域21に至るトレンチ15内に埋め込まれたゲート導体(ポリシリコンゲート)26と、ソース領域16に電気的に接続されたソース電極4とを含む。ソース電極4は、ソース領域16に接するように形成され、ソース領域16との界面がシリサイド化された密着層41を有する。密着層41は、膜厚が150Å以下の金属層からなる。 (もっと読む)


【課題】半導体装置の特性を向上させる。
【解決手段】LDMOSと、LDMOSのソース領域と電気的に接続されるソースプラグP1Sと、ソースプラグP1S上に配置されるソース配線M1Sと、LDMOSのドレイン領域と電気的に接続されるドレインプラグP1Dと、ドレインプラグP1D上に配置されるドレイン配線M1Dと、を有する半導体装置のソースプラグP1Sの構成を工夫する。ドレインプラグP1Dは、Y方向に延在するライン状に配置され、ソースプラグP1Sは、Y方向に所定の間隔を置いて配置された複数の分割ソースプラグP1Sを有するように半導体装置を構成する。このように、ソースプラグP1Sを分割することにより、ソースプラグP1SとドレインプラグP1D等との対向面積が低減し、寄生容量の低減を図ることができる。 (もっと読む)


【課題】微細化を達成するとともに、ゲート電極等の信頼性を確保する半導体装置の製造方法を提供する。
【解決手段】N型MISトランジスタ及びP型MISトランジスタのそれぞれのゲート形成領域において、N型MISトランジスタのゲート形成領域の凹部内に形成されたゲート絶縁膜F0上に第1の金属含有膜F1を、P型MISトランジスタのゲート形成領域の凹部内に形成されたゲート絶縁膜F0上に第3の金属含有膜F3を形成し、第1の金属含有膜F1上及び第3の金属含有膜F3上に第2の金属含有膜F2を形成し、N型MISトランジスタのゲート絶縁膜F0に接する第1の金属含有膜F1の仕事関数がP型MISトランジスタのゲート絶縁膜F0に接する第3の金属含有膜F3の仕事関数よりも小さい。 (もっと読む)


【課題】配線加工時のエッチングレートの極端な上昇を抑え、プロセスを安定化させる。
【解決手段】炭化珪素基板1上に形成された炭化珪素層20の上に、ソース電極8、ゲート電極9、層間絶縁膜10、層間絶縁膜10上に形成されたソース電極上部配線11およびゲート電極上部配線12とが形成され、ソース電極上部配線11とゲート電極上部配線12の下には、これらの上部配線を構成する金属が炭化珪素層20に拡散することを抑制するためのバリアメタル16が形成されている。層間絶縁膜10には、炭化珪素層20上に形成されたソース電極8およびゲート電極9に到達するようにコンタクトホール13、15が形成されており、バリアメタル16はコンタクトホール内の電極と上部配線との界面、層間絶縁膜10の側壁と上部配線との界面、および側壁の上端部近傍と上部配線との界面にのみ形成されている。 (もっと読む)


【課題】配線形成時に配線形成用溝の間口を閉塞させないで配線形成用溝内に連続したCu膜を形成できる半導体装置の製造方法を提供する。
【解決手段】配線形成用溝形成工程では、層間絶縁膜10に配線形成用溝31を形成する。バリアメタル膜形成工程では、配線形成用溝31が形成された層間絶縁膜10上の全面にバリアメタル膜14を形成する。Cu膜形成工程では、配線形成用溝31間の層間絶縁膜10上の膜厚に比して配線形成用溝31内の底部の方が厚くなるように、バリアメタル膜14上にCu膜15を形成する。リフロー工程では、バリアメタル膜14上のCu膜15をリフローさせ、配線形成用溝31内に埋め込む。そして、除去工程では、少なくとも配線形成用溝31間の層間絶縁膜10上のバリアメタル膜14をCMP法によって除去する。 (もっと読む)


【課題】半導体用銅合金配線自体に自己拡散抑制機能を有せしめ、活性なCuの拡散による配線周囲の汚染を効果的に防止することができ、またエレクトロマイグレーション(EM)耐性、耐食性等を向上させ、バリア層が任意に形成可能かつ容易であり、さらに半導体用銅合金配線の成膜工程の簡素化が可能である半導体用銅合金配線及び同配線を形成するためのスパッタリングターゲット並びに半導体用銅合金配線の形成方法を提供する。
【解決手段】Mn0.05〜20wt%を含有し、Be,B,Mg,Al,Si,Ca,Ba,La,Ceの総計が500wtppm以下、残部がCu及び不可避的不純物であることを特徴とするCu−Mn合金スパッタリングターゲット。 (もっと読む)


【課題】半導体装置の高集積化を図り、単位面積あたりの記憶容量を増加させる。
【解決手段】半導体装置は、半導体基板に設けられた第1のトランジスタと、第1のトランジスタ上に設けられた第2のトランジスタとを有する。また、第2のトランジスタの半導体層は、半導体層の上側で配線と接し、下側で第1のトランジスタのゲート電極と接する。このような構造とすることにより、配線及び第1のトランジスタのゲート電極を、第2のトランジスタのソース電極及びドレイン電極として機能させることができる。これにより、半導体装置の占有面積を低減することができる。 (もっと読む)


【課題】携帯電話などのフロントエンドモジュールに使用されているハイパワーアンプは、シリコン系CMOS集積回路をベースとするデバイスであるが、その出力段に多数のLDMOSFETセルを集積し、通常、複数のLDMOSFETを構成したLDMOSFET部を有する。このLDMOSFETセルにおいては、裏面のソース電極と表面のソース領域との間の抵抗を低減するために、半導体基板に高濃度にボロンドープされたポリシリコンプラグが埋め込まれている。このポリシリコンプラグは、熱処理に起因する固相エピタキシャル成長により収縮し、シリコン基板に歪が発生する。
【解決手段】本願発明は、LDMOSFET等の半導体装置の製造方法において、基板の表面からエピタキシャル層を貫通するホールを形成し、ポリシリコンプラグを埋め込むに際して、ホールの内面に薄膜酸化シリコン膜が存在する状態で、ポリシリコン部材の堆積を行うものである。 (もっと読む)


【課題】タングステン膜を使用した部分の抵抗を低減した半導体装置を提供する。
【解決手段】半導体装置の製造方法では、基板内に設けた開口部内、又は基板上にタングステン膜を形成する。タングステン膜の形成後、エッチバック又はエッチングを行う前にタングステン膜に対してアニール処理を行う。これにより、タングステン膜の結晶状態を変化させる。 (もっと読む)


【課題】包囲型ゲート電極付きの歪みSOI構造のMISFETの提供
【解決手段】
半導体基板1上に第1の絶縁膜2が設けられ、第1の絶縁膜2上に第2の絶縁膜3が選択的に設けられ、第2の絶縁膜3上に設けられた第1の半導体層5間に、第2の絶縁膜3が設けられていない部分上に設けられた第2の半導体層6が挟まれた構造からなる半導体層が島状に絶縁分離されて設けられ、第2の半導体層6の周囲にはゲート絶縁膜12を介して包囲型ゲート電極13が設けられ、第1の半導体層5には概略高濃度ソースドレイン領域(8、11)及び低濃度ソースドレイン領域(9、10)が設けられ、第2の半導体層6には概略チャネル領域が設けられ、高濃度のソースドレイン領域(8、11)及び包囲型ゲート電極13には配線体(17、18、20、21)が接続されているMISFET。 (もっと読む)


【課題】酸窒化物膜を作製する成膜技術を提供する。また、その酸窒化物膜を用いて信頼性の高い半導体素子を作製する。
【解決手段】窒化インジウム、窒化ガリウム、窒化亜鉛の少なくとも1つを原料の一とし、これと、酸化インジウム、酸化ガリウム、酸化亜鉛の少なくとも1つと混合して窒素雰囲気中で焼結したインジウムとガリウムと亜鉛を有する酸窒化物よりなるスパッタリングターゲットを用いて酸窒化物膜を作製することにより、必要な濃度の窒素を含んだ酸窒化物膜が得られる。得られた酸窒化物膜はトランジスタのゲートやソース電極、ドレイン電極等に用いることができる。 (もっと読む)


【課題】高温で成膜される低融点金属の凝集を防止し、十分なバリア性及びぬれ性を有するバリア層を形成して、凹部に低融点金属を付け回り良く充填する。
【解決手段】電子部品の製造方法が、4Pa以上20Pa以下の圧力下で、被処理体306と接する電極301に第1のバイアス電力を印加し、プラズマ処理により被処理体306の上にTiNxからなる第1のバリア層404を成膜する手順と、4Pa以上20Pa以下の圧力下で、電極301に第1のバイアス電力よりも小さいイオン入射エネルギーを与える第2のバイアス電力を印加し、またはバイアス電力を印加しないで、プラズマ処理により第1のバリア層の上にTiNxからなる第2のバリア層405を成膜する手順と、第2のバリア層405の上に、Tiからなる第3のバリア層409を成膜する手順と、第3のバリア層409の上に低融点金属406を充填する手順と、を有する。 (もっと読む)


【課題】 本発明は、以上の点に鑑み、異種金属からなる導電層間に介在されるような場合でも十分なバリア性能を発揮し得るバリア層を生産性よく形成することができるバリア層の形成方法を提供する。
【解決手段】 バリア層BMは、処理対象物Wを一方の導電層CL1を有するものとし、この処理対象物と、例えばTi製のターゲット2とを真空処理室1a内に配置し、真空処理室内に希ガスを導入してプラズマ雰囲気を形成し、ターゲットをスパッタリングして一方の導電層表面に第1金属層を形成し、真空処理室内に酸素ガス及び窒素ガスを含むガスを導入してプラズマ雰囲気を形成し、第1金属層の表面を酸窒化処理すると共に、ターゲットをもプラズマ雰囲気に曝して当該ターゲット表面を酸窒化し、真空処理室内に希ガスを更に導入してプラズマ雰囲気を形成し、ターゲットをスパッタリングして酸窒化処理された表面に第2金属層を形成してなる。 (もっと読む)


【課題】しきい値電圧の経時的な低下を抑制でき、またアルミ配線による絶縁膜の腐食やAlスパイクに起因するゲート・ソース間の短絡を防止できる半導体装置を提供する。
【解決手段】半導体装置のMOSFETセルは、ポリシリコンのゲート電極6およびn-ドリフト層2の上部に形成されたn+ソース領域4を備える。ゲート電極6上は層間絶縁膜7によって覆われており、Alのソース電極101は、層間絶縁膜7上に延在する。またゲート電極6にはAlのゲートパッド102が接続される。ソース電極101と層間絶縁膜7との間、並びにゲートパッド102とゲート電極6との間のそれぞれに、Alの拡散を抑制するバリアメタル層99が配設される。 (もっと読む)


【課題】信頼性の劣化及び素子のばらつきを抑制しつつ、所望の閾値電圧を実現する。
【解決手段】実施形態による複数の閾値電圧を有する半導体装置500は、基板502と、第1の閾値電圧を有する基板上の第1のトランジスタ510と、第2の閾値電圧を有する基板上の第2のトランジスタ530とを具備する。第1のトランジスタは、基板の第1のチャネル領域上に形成された第1の界面層516と、第1の界面層上に形成された第1のゲート誘電体層518と、第1のゲート誘電体層上に形成された第1のゲート電極520,522とを具備する。第2のトランジスタは、基板の第2のチャネル領域上に形成された第2の界面層536と、第2の界面層上に形成された第2のゲート誘電体層538と、第2のゲート誘電体層上に形成された第2のゲート電極540,542とを具備する。第2の界面層は第1の界面層内になくかつSi、O及びNと異なる添加元素を有する。第1及び第2の閾値電圧は異なる。第1及び第2のトランジスタは同一の導電型である。 (もっと読む)


121 - 140 / 1,113