説明

Fターム[4M104FF32]の内容

半導体の電極 (138,591) | 構造 (12,435) | 電極下の基板構造 (820) | 電極下の複数導電型部(ガードリングを除く) (230)

Fターム[4M104FF32]に分類される特許

1 - 20 / 230





【課題】 リーク電流を低減することで、アクティブ領域の大きなSiCショットキーダイオードを高い良品率で提供する。
【解決手段】 SiCジャンクションバリアショットキーダイオードにおいて、ショットキー接合界面にかかる電界強度を0.1MV/cm以下になるようにトレンチの深さと間隔を設定することで実現する。その結果として、リーク電流が低減し、アクティブ領域の大きなSiCショットキーダイオードを高い良品率で提供できる。 (もっと読む)


【課題】 SiCを含む基板を用いた接合障壁ショットキーダイオードの逆バイアス時の耐圧の低下を抑制することで、半導体装置の信頼性を向上させる。
【解決手段】 0.1cm以上のアクティブ面積を有するJBSダイオードにおいて、アクティブ領域内の接合障壁領域であるp型半導体領域3の割合を相対的に大きくすることで、ドリフト層2とショットキー電極4とが接するショットキー界面の面積を十分に小さくし、ドリフト層2内に存在する欠陥に起因する耐圧の低下を防ぐ。 (もっと読む)


【課題】高温環境下で半導体装置に長時間逆バイアスを与えた場合であってもリーク電流が増加したり耐圧が低下したりすることのない、スーパージャンクション構造を有する半導体装置を提供する。
【解決手段】n型半導体層(第1導電型の半導体層)114と、活性領域R1に形成された複数の柱状埋込層118と、活性領域R1に形成されたショットキーバリアメタル層(第1電極層)132と、耐圧領域R2に形成された複数のガードリング層(環状柱状埋込層)124と、耐圧領域R2及び周辺領域R3に形成された絶縁層130とを備える、スーパージャンクション構造を有する半導体装置であって、周辺領域R3に形成された第2ガードリング層(第2環状柱状埋込層)136と、周辺領域R3に形成された環状導電層142とをさらに備える、スーパージャンクション構造を有する半導体装置100。 (もっと読む)


【課題】 空乏層がp型領域からショットキー接続部に広がり易いダイオードの製造方法を提供する。
【解決手段】 半導体基板の一方の表面に形成されているアノード電極と、半導体基板の他方の表面に形成されているカソード電極と、半導体基板内に形成されており、アノード電極に対してオーミック接続されているp型領域と、半導体基板内に形成されており、p型領域に隣接しており、アノード電極に対してショットキー接続されており、カソード電極に対してオーミック接続されているn型領域を有するダイオードの製造方法。この製造方法は、p型不純物をマスクを通して半導体基板に注入する第1注入ステップと、その後に、第1注入ステップと注入深さを変更して前記p型不純物と同種のp型不純物を前記マスクと同一のマスクを通して半導体基板に注入する第2注入ステップとを実行することで、前記p型領域を形成する。 (もっと読む)


【課題】 耐圧を低下させることなく、トレンチ開口幅を小さくすることができるショットキー接合型半導体装置を提供する。
【解決手段】 トレンチの断面形状を、トレンチの底面部の中央が高く、周辺が低いサブトレンチ形状とし、p型不純物をドリフト層表面に対して垂直に導入することで、サブトレンチが設けられたトレンチの内壁部に接するように形成されたp+SiC領域が、トレンチの底面の中央での接合位置よりも、トレンチの底面の周辺での接合位置が深くなるように形成する。 (もっと読む)


【課題】SiCを含む基板を用いたショットキーダイオードのショットキー界面のドリフト層に結晶欠陥が生じている場合に、逆方向漏れ電流の発生を防ぐことで、半導体装置の信頼性を向上させる。
【解決手段】半導体基板上のドリフト層2とショットキー電極4とのショットキー接合部を含むショットキーダイオードにおいて、ドリフト層2の上面に達する結晶欠陥12の上面に、ショットキー電極4を構成する金属に応じて規定される濃度および深さで、アクセプタ不純物を導入してp型半導体領域3を形成し、逆方向漏れ電流の増大を防ぐ。 (もっと読む)


【課題】高耐圧を確保できながら、逆方向リーク電流および順方向電圧を低減することができる半導体装置を提供すること。
【解決手段】その表面12にショットキーメタル22が形成されたエピタキシャル層6を備えるショットキーバリアダイオード1において、エピタキシャル層6の表面12に沿う方向に互いに間隔を空けて配列され、それぞれが表面12から裏面11へ向かってエピタキシャル層6の厚さ方向に延びるp型ピラー層17を形成することにより、エピタキシャル層6にスーパージャンクション構造を形成する。また、エピタキシャル層6の表面12の近傍に、p型ピラー層17よりも不純物濃度の高い電界緩和層19を選択的に形成する。 (もっと読む)


【課題】ショットキー電極形成前に酸洗浄を行ってもp型オーミック電極がその酸に曝されることなく、p型オーミック電極とショットキー電極との電気的接続が良好な炭化珪素半導体装置及びその製造方法を提供する。
【解決手段】本発明の炭化珪素半導体装置は、炭化珪素基板1と、基板1上に形成されたn型炭化珪素層2と、n型炭化珪素層2の表面近傍に形成された複数のp型不純物領域3と、p型不純物領域3上の一部に形成されたp型オーミック電極4と、p型不純物領域3上の一部に、p型オーミック電極4を覆うように形成された耐酸性のバリアメタル層5と、バリアメタル層5、p型不純物領域3、及びn型炭化珪素層2上に形成されたショットキー電極6と、ショットキー電極6上に形成された第1の電極と、炭化珪素基板1のn型炭化珪素層が形成されていない側に形成された第2の電極と、を備えたことを特徴とする。 (もっと読む)


【課題】一般にショットキー整流器は定格逆電圧での逆漏れが高く、一方PN構造ダイオードは逆漏れがすくない。両者を並列接続し、低順方向電圧降下を与えると共に、両端で逆サージを保護する。
【解決手段】低逆電圧定格化PNダイオード、および独立集積回路素子におけるPNダイオードに電気的に並列接続した高逆電圧定格化ショットキー整流器からなる低順方向電圧降下過渡電圧サプレッサー。 (もっと読む)


【課題】本発明は、電界集中を緩和することで十分なサージ電流耐性を有した半導体装置およびその製造方法の提供を目的とする。
【解決手段】本発明にかかる半導体装置は、炭化珪素からなる第1導電型の半導体層としてのn型半導体層1と、n型半導体層1表層において、ショットキーダイオードの素子領域を平面視上囲んで形成された、第2導電型の第1不純物層としてのp++型半導体層5aと、n型半導体層1表層において、素子領域を、少なくともp++型半導体層5aの平面視上外側から囲んで形成された、第2導電型の第2不純物層としてのp++型半導体層5bと、p++型半導体層5a表層まで延設して素子領域上に形成されたアノード電極3とを備え、p++型半導体層5aの不純物濃度が1×1020cm-3以上である。 (もっと読む)


【課題】ホモエピタキシャルLED、LD、光検出器又は電子デバイスを形成するために役立つGaN基板の形成方法の提供。
【解決手段】約10/cm未満の転位密度を有し、傾角粒界が実質的に存在せず、酸素不純物レベルが1019cm−3未満の窒化ガリウムからなる単結晶基板上に配設された1以上のエピタキシャル半導体層を含むデバイス。かかる電子デバイスは、発光ダイオード(LED)及びレーザーダイオード(LD)用途のような照明用途、並びにGaNを基材とするトランジスター、整流器、サイリスター及びカスコードスイッチなどのデバイスの形態を有し得る。また、約10/cm未満の転位密度を有し、傾角粒界が実質的に存在せず、酸素不純物レベルが1019cm−3未満の窒化ガリウムからなる単結晶基板を形成し、該基板上に1以上の半導体層をホモエピタキシャルに形成する方法及び電子デバイス。 (もっと読む)


【課題】高速回復整流器構造体の装置および方法を提供する。
【解決手段】具体的には構造体は第1のドーパントの基板(120)を含む。第1のドーパントが低濃度ドープされた第1のエピタキシャル層(140)が基板に結合されている。第1の金属層(190)が第1のエピタキシャル層に結合されている。複数のトレンチ(175)が第1のエピタキシャル層内に窪んでおり、その各々が金属層と結合している。装置は各々第2のドーパント型がドープされた複数のウェルも含み、各ウェルは対応するトレンチの下に且つ隣接して形成されている。複数の酸化物層(170)が対応するトレンチの壁および底部上に形成されている。第1のドーパントがドープされた複数のチャネル領域が、2つの対応するウェル間の第1のエピタキシャル層内に形成されている。複数のチャネル領域(150)の各々は第1のエピタキシャル層より高濃度に第1のドーパントがドープされている。 (もっと読む)


【課題】高品質かつ高信頼性の素子を作製できるSiCエピタキシャルウエハ、およびそれを用いて得られるSiC半導体素子を提供すること
【解決手段】4°以下のオフ角を有するSiC基板2と、SiC基板2の主面4に形成され、その表面10に0.5nm以上の高さのステップバンチング9が形成されたSiCエピタキシャル層3とを含むSiCエピタキシャルウエハ1において、ステップバンチング9の線密度を40cm−1以下にする。 (もっと読む)


【課題】ソース領域に3C−SiC構造のSiCを用いて低い寄生抵抗を実現し、高い性能を備える半導体装置を提供する。
【解決手段】実施の形態の半導体装置は、第1のn型炭化珪素層と、第1のn型炭化珪素層よりもn型不物濃度の低い第2のn型炭化珪素層を有する半導体基板と、第2のn型炭化珪素層に形成される第1のp型不純物領域と、第2のn型炭化珪素層に形成される4H−SiC構造の第1のn型不純物領域と、第2のn型炭化珪素層に形成され、第1のn型不純物領域よりも深さの浅い3C−SiC構造の第2のn型不純物領域と、第2のn型炭化珪素層、第1のp型不純物領域、第1のn型不純物領域の表面にまたがるゲート絶縁膜と、ゲート絶縁膜上のゲート電極と、第1のn型不純物領域上に形成され、底面部と側面部を備え、少なくとも側面部で第1のn型不純物領域との間に第2のn型不純物領域を挟む金属シリサイド層と、を備える。 (もっと読む)


【課題】 実施形態は、低損失な炭化珪素半導体装置の製造方法を提供することを目的とする。
【解決手段】 実施形態の炭化珪素半導体装置の製造方法は、炭化珪素基板にイオン注入する工程と、前記イオン注入がされた炭化珪素基板に第1の熱処理を行う工程と、前記第1の熱処理がされた炭化珪素基板に前記第1の熱処理より低温の第2の熱処理を行う工程と、を有することを特徴とする。 (もっと読む)


【課題】SiC基板上に形成されたデバイスに対して、低温の熱工程にて良好なオーミック特性を備える電極を実現する半導体装置の製造方法を提供する。
【解決手段】実施の形態の半導体装置の製造方法は、炭化珪素(SiC)で形成されるn型不純物領域上およびp型不純物領域上に金属シリサイド膜を形成し、n型不純物領域上の金属シリサイド膜中にリン(P)をイオン注入し、第1の熱処理を行い、p型不純物領域上の金属シリサイド膜中にアルミニウム(Al)をイオン注入し、第1の熱処理よりも低温の第2の熱処理を行う (もっと読む)


【課題】 この実施の形態は、SiC半導体基板上に形成されたn型半導体領域とp型半導体領域を形成した半導体装置において、n型半導体領域とp型半導体領域の両領域にまたがって、単一の金属電極用いて同時コンタクトを形成することを目的としている。
【解決手段】 この実施の形態の半導体装置は、導電性材料を用いた第1の電極240に、導電型がp型の第1の炭化珪素(SiC)半導体部220と、導電型がn型の第2のSiC半導体部230とが接続され、前記第1の電極と前記第1の界面部において炭素(C)の面密度がピークになるようしている。 (もっと読む)


1 - 20 / 230