説明

Fターム[4M104GG12]の内容

半導体の電極 (138,591) | 適用素子 (17,168) | MESFET (697)

Fターム[4M104GG12]に分類される特許

1 - 20 / 697





【課題】ノーマリオフで動作するとともに、高い耐圧と低いオン抵抗を具備した半導体装置を提供すること。
【解決手段】 半導体装置1では、ドレイン電極21が第1ヘテロ接合面32に形成される2次元電子ガス層に対して電気的に接続可能に構成されており、ソース電極29が第1ヘテロ接合面32に形成される2次元電子ガス層から電気的に絶縁可能に構成されているとともに第2ヘテロ接合面34に形成される2次元電子ガス層に対して電気的に接続可能に構成されており、ゲート部28が第2ヘテロ接合面34に対向しており、導通電極25が第1ヘテロ接合面32及び第2ヘテロ接合面34に形成される2次元電子ガス層の双方に対して電気的に接続可能に構成されている。第1ヘテロ接合面32に形成される2次元電子ガス層の電子濃度は、第2ヘテロ接合面34に形成される2次元電子ガス層の電子濃度よりも濃い。 (もっと読む)


【課題】電極構造体、それを備える窒化ガリウム系の半導体素子及びそれらの製造方法を提供する。
【解決手段】GaN系の半導体層GL10と、GaN系の半導体層上に備えられた電極構造体500A,500Bと、を備え、電極構造体500A,500Bは、導電物質を含む電極要素50A、50Bと、電極要素50A,50BとGaN系の半導体層200との間に備えられた拡散層5A、5Bと、を備え、拡散層5A,5Bは、n型ドーパントを含み、n型ドーパントは、4族元素を含み、拡散層と接触したGaN系の半導体層200の領域は、n型ドーパント(例えば、4族元素)でドーピングされる窒化ガリウム系の半導体素子である。 (もっと読む)


【課題】所望の位置にグラフェン膜を有するグラフェン構造及びこれを用いた半導体装置を提供する。
【解決手段】所定の基材3上において、炭素含有層4と、少なくともケイ素を含む炭素化合物層5とを順次に積層し、その上に絶縁膜層6を形成した後、絶縁膜層の一部をエッチングにより取り除いた基板に対してアニーリングを実施し、絶縁膜の除去部にのみグラフェン膜7を形成したグラフェン構造1を形成し、これを用いて表面にショットキー電極8、およびオーミック電極9,10を形成させて半導体装置2を作製する。 (もっと読む)


【課題】複数のチャネルを有する窒化物半導体装置において、ノーマリオフかつ低オン抵抗を実現する技術を提供する。
【解決手段】第1の窒化物半導体層3,5,7と、第1の窒化物半導体層よりも禁制帯幅が大きい第2の窒化物半導体層5,6,8とが積層されたヘテロ接合体を少なくとも2つ以上有する窒化物半導体積層体10を備え、窒化物半導体積層体10に設けられたドレイン電極14と、ソース電極13と、ドレイン電極14とソース電極13の両者に対向して設けられたゲート電極15,16とを有し、ドレイン電極14とソース電極13は、窒化物半導体積層体10の表面または側面に配置され、ゲート電極15,16は、窒化物半導体積層体10の深さ方向に設けられた第1ゲート電極15と、該第1ゲート電極15と窒化物半導体積層体10の深さ方向の配置深さが異なる第2ゲート電極16とを有する。 (もっと読む)


【課題】基板の自由度があり、待機時(光非照射時)の電力消費が小さく、また光照射時のS/Nが大きい受光素子を提供することである。
【解決手段】紫外線が透過する材料をFETの電極として用い、また、電子走行領域をAlGaNとGaNとのヘテロ界面等のGaN系膜同士のヘテロ界面とする。 (もっと読む)


【課題】窒化ガリウム(GaN)系のHEMTを保護するダイオード構造を備えた半導体装置とその製造方法を提供する。
【解決手段】基板10のうちGaN層13に2次元電子ガスが生成される領域が活性層領域40とされ、基板10のうち活性層領域40を除いた領域にイオン注入が施されていることにより活性層領域40とは電気的に分離された領域が素子分離領域50とされている。そして、ダイオード60は素子分離領域50の層間絶縁膜20の上に配置されている。このように、基板10のうちHEMTが動作する活性層領域40とは異なる素子分離領域50を設けているので、1つの基板10にGaN−HEMTとダイオード60の両方を備えた構造とすることができる。 (もっと読む)


【課題】櫛型形状のソース電極とドレイン電極が交差指状に配置された電極構造を有し、各櫛形電極の先端部での電界集中が緩和された窒化物半導体装置を提供する。
【解決手段】ゲート電極5と電気的に接続され、ゲート電極5とドレイン電極4間で絶縁膜7上に配置されたゲートフィールドプレート50と、ソース電極3と電気的に接続され、絶縁膜8を介して窒化物半導体層と対向するようにゲートフィールドプレート50とドレイン電極4間の上方に配置されたソースフィールドプレート30とを備え、ゲート電極5とドレイン電極4間の距離、ゲートフィールドプレート50のドレイン側端部とゲート電極5のドレイン側端部間の距離、及びソースフィールドプレート30のドレイン側端部とゲートフィールドプレート50のドレイン側端部間の距離の少なくともいずれかが、ソース電極3とドレイン電極4の、歯部分の直線領域よりも歯部分の先端領域において長い。 (もっと読む)


【課題】ヘテロ構造電界効果トランジスタに関して、電流崩壊、ゲートリークおよび高温信頼性などの課題を解消する。
【解決手段】高電子移動度トランジスタ(HEMT)、金属−絶縁半導体電界効果トランジスタ(MISFET)あるいはこれらの組み合わせなどの集積回路(IC)デバイスの装置、方法およびシステムであって、該ICデバイスは、基板102上で形成されたバッファ層104と、アルミニウム(Al)と窒素(N)とインジウム(In)またはガリウム(Ga)の少なくとも1つを含み、バッファ層104上に形成されたバリア層106と、窒素(N)とインジウム(In)またはガリウム(Ga)の少なくとも1つとを含み、バリア層106上に形成されたキャップ108層と、キャップ層108に直接連結され、その層上に形成されたゲート118と、を含む。 (もっと読む)


【課題】性能の劣化を抑制することができる半導体装置を提供すること。
【解決手段】実施形態に係る半導体装置10は、半導体層12、絶縁膜17、ゲート電極22、ドレイン電極19およびソース電極20、を具備する。半導体層12は、半絶縁性半導体基板11上に形成され、表面に、側壁が傾いたテーパ状のリセス領域18を有する。半導体層12は、活性層14を含む。絶縁膜17は、半導体層12上に形成されたものであり、リセス領域18を全て露出する貫通孔21を有する。貫通孔21は、側壁がリセス領域18の側壁の傾き角θ1より小さい角度θ2で傾いたテーパ状である。ゲート電極22は、リセス領域18および貫通孔21を埋めるように形成されたものである。ドレイン電極19およびソース電極20は、半導体層12上のうち、リセス領域18を挟む位置に形成されたものである。 (もっと読む)


【課題】耐圧を向上させることができる半導体装置を提供する。
【解決手段】半導体装置10は、ソース領域12a、複数の帯状のドレイン領域12b、チャネル領域、ソース電極16、ドレイン電極15、およびゲート電極17を具備する。ソース領域12aは、化合物半導体層11上に形成された平面状の領域である。複数の帯状のドレイン領域12bは、化合物半導体層11上に、互いに電気的に分離されるように形成される。チャネル領域は、ソース領域12aの一辺に接し、かつソース領域12aと複数のドレイン領域12bとの間に、互いに電気的に分離されるように形成される。ソース電極16は、ソース領域12a上の少なくとも一部に形成される。ドレイン電極15は、複数のドレイン領域12bに電気的に接続されるように形成される。ゲート電極17は、複数のチャネル領域に電気的に接続されるように形成される。 (もっと読む)


【課題】低コンタクト抵抗を実現し得る半導体基板上の半導体層と電極配線層とのオーミック電極構造を提供する。
【解決手段】半導体基板106と、半導体基板106上に形成された第1のバリア層107と、第1のバリア層107上に形成された厚さ1nm以上40nm以下のチャネル層108と、チャネル層108の上に形成された第2のバリア層102と、少なくとも第2のバリア層102及びチャネル層108を厚さ方向に貫通する第1の電極領域109と、少なくとも第2のバリア層102及びチャネル層108を厚さ方向に貫通する第2の電極領域109とを備える半導体装置であって、少なくとも第1の電極領域109は、チャネル層108と接触する側の面が凹凸形状で構成されている。 (もっと読む)


【課題】化合物半導体積層構造上の絶縁膜に所期の微細な開口を形成するも、リーク電流を抑止した信頼性の高い高耐圧の化合物半導体装置を実現する。
【解決手段】化合物半導体積層構造2上にパッシベーション膜6を形成し、パッシベーション膜6の電極形成予定位置をドライエッチングにより薄化し、パッシベーション膜6の薄化された部位6aをウェットエッチングにより貫通して開口6bを形成し、この開口6bを電極材料で埋め込むように、パッシベーション膜6上にゲート電極7を形成する。 (もっと読む)


【課題】高電圧動作時においても電流コラプス現象を十分に抑制し、高耐圧及び高出力を実現する信頼性の高い化合物半導体装置を得る。
【解決手段】HEMTは、化合物半導体層2と、開口を有し、化合物半導体層2上を覆う保護膜と、開口を埋め込み、化合物半導体層2上に乗り上げる形状のゲート電極7とを有しており、保護膜は、酸素非含有の下層絶縁膜5と、酸素含有の上層絶縁膜6との積層構造を有しており、開口は、下層絶縁膜5に形成された第1の開口5aと、上層絶縁膜6に形成された第1の開口5aよりも幅広の第2の開口6aとが連通してなる。 (もっと読む)


【課題】電極と化合物半導体層との界面に電極材料が到達することを抑止し、ゲート特性の劣化を防止した信頼性の高い高耐圧の化合物半導体装置を提供する。
【解決手段】化合物半導体積層構造2と、化合物半導体積層構造2上に形成され、貫通口6aを有するパッシベーション膜6と、貫通口6aを埋め込むようにパッシベーション膜6上に形成されたゲート電極7とを有しており、ゲート電極7は、相異なる結晶配列の結晶粒界101が形成されており、結晶粒界101の起点が貫通口6aから離間したパッシベーション膜6の平坦面上に位置する。 (もっと読む)


【課題】閾値電圧を制度良く制御することが可能な半導体装置及びその製造方法を提供する。
【解決手段】基板10上に、窒化物半導体からなるチャネル層14と、チャネル層14よりもバンドギャップエネルギーの大きい第1窒化物半導体層16と、を順次形成する工程と、第1窒化物半導体層16上であって、ゲート電極26を形成すべき領域にダミーゲートを形成する工程と、ダミーゲートを形成した後、第1窒化物半導体層16上のダミーゲート以外の領域に、チャネル層14のバンドギャップエネルギー以上の大きさのバンドギャップエネルギーを有する第2窒化物半導体層18を再成長する工程と、ダミーゲートを除去した後、ダミーゲートを除去した領域の第1窒化物半導体層16上にゲート電極26を形成する工程と、を有する半導体装置の製造方法。 (もっと読む)


【課題】動作電圧の高電圧化を図るも、電極端における電界集中を緩和してデバイス特性の劣化を確実に抑止し、高耐圧及び高出力を実現する信頼性の高い化合物半導体装置を提供する。
【解決手段】HEMTは、SiC基板1上に、化合物半導体層2と、開口6bを有し、化合物半導体層2上を覆う、窒化珪素(SiN)の保護膜6と、開口6bを埋め込むように化合物半導体層2上に形成されたゲート電極7とを有しており、保護膜6は、その下層部分6aが開口6bの側面から張り出した張出部6cが形成されている。 (もっと読む)


【課題】半導体層と電極との間に絶縁膜を介するMIS構造を採用するも、オン抵抗の上昇及び閾値の変動を抑止し、信頼性の高い半導体装置を得る。
【解決手段】AlGaN/GaN・HEMTは、化合物半導体積層構造2と、化合物半導体積層構造2の表面と接触する挿入金属層4と、挿入金属層4上に形成されたゲート絶縁膜7と、挿入金属層4の上方でゲート絶縁膜7を介して形成されたゲート電極8とを含み構成される。 (もっと読む)


1 - 20 / 697