説明

Fターム[5C038FF13]の内容

計測用電子管 (3,290) | 電子・イオン光学的装置 (382) | その他 (116)

Fターム[5C038FF13]に分類される特許

61 - 80 / 116


交互に並んだ、第1の複数の環電極(205)と第2の複数の環電極(210)とを備えた電極集合体(120)を含む、質量分析計の圧力の高い領域と低い領域との間でイオンを輸送するためのイオン移送装置である。第1複数環電極(205)は、長手方向において第2複数環電極(210)よりも狭いが、第1複数環電極は、そこに印加された、第1極性の相対的に高い電圧を持ち、一方、第2複数環電極(210)は、そこに印加された、第1組環電極(205)に印加されている電圧と反対の極性の、相対的に低い電圧を持っている。この方法では、イオン移送装置を通過するイオンは、イオンをチャネル壁の内側表面から遠ざけ、チャネル対称面または対称軸に向かって収束する、空間的に交互に並んだ非対称電界を受ける。
(もっと読む)


質量分析計の圧力の高い領域と低い領域との間にイオン移送導管60を設ける工程を含む、圧力の高い領域と低い領域との間で、ガスと同伴イオンとを輸送する方法である。イオン移送導管60は、イオン移送チャネルを構成する電極集合体300を含んでいる。電極集合体300は、第1の幅D1の第1組の環電極305と、第1環電極305と交互に並んだ、第2の幅D2(≧D1)の第2組の環電極とを備えている。大きさVおよび第1極性のDC電圧を第1環電極205に印加し、Vより小さい、または等しい大きさVであって、Vと反対極性のDC電圧を第2環電極310に印加する。イオン移送導管60の圧力を、イオン移送チャネル内でガスとイオンの粘性流が保たれるよう制御する。
(もっと読む)


第1のRF電圧(7a)が、上流グループの電極に印加され、第2の異なるRF電圧(7b)が下流グループの電極に印加される複数の電極を有する衝突またはフラグメンテーションセル(4)が開示される。衝突またはフラグメンテーションセル(4)に入る親イオンの半径方向の閉じ込めは、上流グループの電極に印加される第1のRF電圧によって最適化され、衝突またはフラグメンテーションセル(4)内で生成される娘またはフラグメントイオンの半径方向の閉じ込めは、下流グループの電極に印加される第2の異なるRF電圧によって最適化される。 (もっと読む)


多重反射TOF質量分析計は2個の平行なグリッドのないイオンミラーを有し、各イオンミラーはドリフト方向(Z)に長い構造を有する。これらのイオンミラーは、ドリフト方向(Z)に垂直な飛行方向(X)におけるイオンの多重反射によって形成される折り返しイオン経路を提供する。分析器は、ドリフト方向(Z)にイオンを反射させるための、グリッドのない付加的なイオンミラーも有する。操作時には、イオンは折り返しイオン経路に沿う飛行時間の違いにより質量電荷比によって分離され、略同一の質量電荷比を有するイオンは、飛行方向、及びドリフト方向のそれぞれに対してエネルギー収束を受ける。
(もっと読む)


【課題】周回軌道を形成するイオン光学系の空間収束条件を緩和することにより設計を容易にしながら、イオン透過効率等、必要な性能を十分に確保する。
【解決手段】イオン光学系の周回軌道が、時間収束条件として(t|x)=(t|α)=(t|δ)=0を満たし、空間収束条件として、−2<(x|x)+(α|α)<2、−2<(y|y)+(β|β)<2を満たすようにする(但し、(x|x)などは一般的なイオン光学系の表現形式において()内の記号の要素により決まる定数)。従来、空間収束条件として、(x|x)、(α|α)、(y|y)、(β、β)がいずれも±1である必要があったのに対し条件が大幅に緩和されることで、イオン光学系を構成する電極の形状等を決めるパラメータの自由度が広がる。 (もっと読む)


【課題】試料と検出器とにおける所望の検出条件を変えることなく、試料に対する一次イオンの入射角度を変更することが可能となる二次イオン質量分析装置を提供する。
【解決手段】本二次イオン質量分析装置は、照射方向可変イオン照射装置と試料台と質量分析器とを含んでなる。この照射方向可変イオン照射装置は、固定されたイオン銃と、照射されるイオンの進行方向の変化を制御可能な偏向板であって、照射経路においてイオン銃に近い方の第一の偏向板と、照射されるイオンの進行方向の変化を制御可能な偏向板であって、照射経路においてイオン銃から遠い方の第二の偏向板とを含んでなり、第一の偏向板と第二の偏向板とが、それぞれ独立に、ある点を中心にして回転し得る機構を有する。 (もっと読む)


【課題】飛行時間型質量分析装置では、イオンが垂直加速を受ける際、各電極プレートの取り付け角度はイオン軌道を制御する上で非常に重要となる。高分解能を得るためは、イオンの軌道は理想軌道を描く必要がある。理想軌道から大きく外れた場合、イオンが検出器に効率よく入射されないため、分析感度が低下するか、最悪測定が行えなくなる可能性がある。本発明の目的は、スペーサ,電極板等の寸法誤差があっても高い精度でイオンの軌道を確保できる構造を備えた質量分析計を提供することにある。
【解決手段】イオン化した試料を射出し、射出されたイオンの飛行時間を計測して質量を分析する飛行時間型質量分析計において、イオンを射出するために、測定対象イオンに電位差を与え加速させる電極プレート、当該電極プレートにより射出されたイオンの射出方向を制御するグリッド電極、がそれぞれ別の支持体で支持されている飛行時間型質量分析装置。 (もっと読む)


【課題】EI及びPIの双方が可能であって、小型に構成でき、PIの際に広い範囲にわたって試料分子に対し一様に光を照射することにより検出効率及び感度の向上が可能なイオン化装置を提供する。
【解決手段】イオン化装置2は、試料分子Aをイオン化するためのイオン化空間2bを有するイオン化室2aと、イオン化空間2b内の試料分子Aに電子衝撃を与えて試料分子Aをイオン化するためのフィラメント23a,23bと、イオン化空間2b内の試料分子Aに紫外光を照射して試料分子Aをイオン化するための放電管29とを備える。 (もっと読む)


【課題】本発明の目的は被測定対象イオンの質量による飛行時間の違いに基づいて質量分析を行う飛行時間型質量分析器を使用した質量分析計の感度および分析精度の向上を図るのに適した質量分析装置を提供することにある。
【解決手段】イオンを射出する射出部の前に設けられているイオン溜りの前段にゲート電極を設ける。このゲート電極は、質量数領域ごとに設定された電圧を印加可能で、さらに高速で切り替えることにより、測定したいイオンを質量数で分離できるため分解能を向上させることができる。 (もっと読む)


【課題】 デソープションイオン化方法において、試料台表面近傍のイオンを最大限に捕集する機構を提供する。
【解決手段】 生じたイオンの広がり以上の幅および高さをもつイオン取り込み口を設け、これを試料台に接するように位置させる。または、試料台に段差をつけて試料の積載された面よりも低い面を設け、生じたイオンの広がり以上の幅および高さをもつイオン取り込み口の開口部底面を、試料の積載された面よりも低く設置する。 (もっと読む)


2つ以上のイオン収束要素および気体チャネリングスリーブを有するイオンガイドが記述される。気体チャネリングスリーブ内のイオン移送空間は、ポンプポートと流体連絡している。吸引デバイスは、ポンプポートを介してイオン移送空間から気体を吸引するために用いられ、気体の流れを作る。イオン移送空間におけるイオンは、気体の流れによって、イオンガイドのイオン入口端部からイオン出口端部に移送される。いくつかの例は、ロッドがイオン収束要素として用いられる多重極イオンガイドを含む。気体チャネリングスリーブはロッドの周りに合っている。別の例において、環状体またはリング形状のイオン収束要素がイオン収束要素として用いられる。別の例において、イオン収束リングのセットは、絶縁体の間に取り付けられ、気体不浸透性側壁を有するシリンダーを形成する。シリンダー自体は、気体チャネリングスリーブとして用いられる。
(もっと読む)


イオンガイドは複数の段を含む。各段の中の電界は、ガイド軸に沿ってイオンを導く。各段の中で、電界の振幅および周波数および分解電位は、独立に変動してもよい。ロッドの幾何構成によって、段から段へと類似の形状の電界が維持され、これによって、軸に沿ったイオンの効率的な誘導が可能になる。特に、i番目の段の各ロッドセグメントは、断面半径riおよび、ガイド軸から距離Ri+riに位置する中心軸を有する。比ri/Riはガイド軸に沿って実質的に一定であり、それによって電界の形状が維持される。

(もっと読む)


【課題】改良された質量分析計および質量分析の方法を提供すること。
【解決手段】期間ΔT1におけるゼロ透過率動作モードと期間ΔT2における非ゼロ透過率動作モードとを繰り返し切り換えてイオンビームを減衰させるイオンビーム減衰器を含む質量分析計が開示されている。イオンビームの減衰の程度は、マークスペース比ΔT2/ΔT1を変化させることによって変化させることができる。イオンビーム減衰器は、イオンをパケットまたはパルスで放出し得るが、イオンのパケットまたはパルスは、イオンビーム減衰器の下流に配置された比較的高圧のイオンガイドまたはガス衝突セルによって、連続したイオンビームに変換され得る。 (もっと読む)


レーザ脱離イオン源は、1つ又は複数のイオンガイドを使用することによりイオンサンプリング効率性及び測定感度を高め、イオン標的から放出されるプルーム中のイオンを効率的に捕獲し、該イオンを開口部経由で下流の真空チャンバ内に誘導する。2つのRF多極イオンガイドを使用する一構成では、イオン標的に隣接して配置されている第1のRF多極イオンガイドは、プルームの大部分を捕獲するのに十分な大きさであるように選択され、一方、第1の多極イオンガイドと開口部との間に配置されている第2のRF多極イオンガイドは、イオンを開口部内に集束するのに役立つようにより小さい寸法を有する。第1のRF多極イオンは、プルーム中のイオンを第2のRF多極イオンガイド内へ誘導し、次いで、第2のRF多極イオンガイドはイオンが開口部を通過して下流の真空チャンバ内に入るようにイオンを集束する。
(もっと読む)


質量分析計は、パルス状イオン源と、パルス状イオン源によって生成されたイオンを閉じ込める第1のイオントラップであって、第1のイオントラップから続いて放出される閉じ込められたイオンの位置を特定するための第1のイオントラップ(10)とを有する。冷却ガスのパルスは、第1のイオントラップ(10)がイオンを閉じ込めることを可能にするのに適しているピーク圧において、第1のイオントラップ(10)に導かれる。ターボ分子ポンプ(17)は、閉じ込められたイオンが、第1のイオントラップ(10)から分析のための第2のイオントラップ(20)の方へ放出される前に、冷却ガスの圧力を減らす。パルス状イオン源は、第1のイオントラップ(10)の端壁を形成する試料プレート(14)を有する。
(もっと読む)


【課題】本発明は、試料を構成する原子および分子の空間的な位置情報と質量情報との両方を同時に高分解能で,しかも高速に測定できるイメージング飛行時間型質量分析装置を提供する
【解決手段】本発明にかかるイメージング質量分析装置1は、レンズ系60を備えるイオン源10と、分析部20と、検出部30とを備えている。イオン源10では、試料の広い範囲を同時にイオン化し、上記レンズ系60を用いて、上記試料のイオン像をそのまま引き出す。その後、分析部20では、上記試料の上記試料のイオン像をそのまま維持し、上記試料のイオンの質量分離を行う。次に、検出部30では、試料イオンの到達位置と飛行時間とを同時に検出する。 (もっと読む)


イオンが使用時に移送される開口を有する複数の電極を含む閉ループイオンガイド(1)が開示される。イオンは、閉ループイオンガイド(1)中へ注入され、イオンガイド(1)から排出される前に閉ループイオンガイド(1)を数回周回し得る。一動作モードにおいて、イオンガイド(1)は、イオンをそのイオン移動度にしたがって時間的に分離するように構成され得る。
(もっと読む)


電子捕獲解離、電子移動解離または表面誘起解離フラグメンテーションデバイスが高フラグメンテーションまたは反応モードと低フラグメンテーションまたは反応モードとの間で繰り返し切り換えられる質量分析の方法が開示される。第1の試料からの親イオンがデバイスを通され、親イオン質量スペクトルおよびフラグメンテーションイオン質量スペクトルが得られる。次いで、第2の試料からの親イオンがデバイスを通され、第2セットの親イオン質量スペクトルおよびフラグメンテーションイオン質量スペクトルが得られる。次いで、質量スペクトルは、比較され、2つの試料における所定の親イオンまたは所定のフラグメンテーションイオンのいずれか一方が異なって発現される場合、さらなる分析が行われて、2つの異なる試料において異なって発現されるイオンを同定しようとする。 (もっと読む)


【課題】
【解決手段】親イオンが混合物から溶離するのと実質的に同時に生成されたと分かった娘イオンを照合することによって親イオンを同定する方法を開示する。イオン源(1)から出射されたイオンは、電子捕獲解離、電子移動解離または表面誘起解離フラグメンテーションデバイスを含むフラグメンテーションデバイス(4)へ移送される。フラグメンテーションデバイス(4)は、イオンが実質的にフラグメンテーションされ、娘イオンを生成する第1のモードとイオンが実質的にフラグメンテーションされない第2のモードとの間を交番しておよび繰り返し切り換えられる。質量スペクトルは、両方のモードにおいてとられる。1回の実験稼動の終了時に、親および娘イオンが2つの異なるモードにおいて得られた質量スペクトルを比較することによって認識される。娘イオンは、それらの溶離時間の一致度にしたがって特定の親イオンと照合され、次いでこれによって親イオンを同定することが可能となる。 (もっと読む)


【課題】
【解決手段】電子衝突解離、電子移動解離または表面誘起解離フラグメンテーションデバイスが高フラグメンテーションモードと低フラグメンテーションモードとの間で繰り返し切り換えられる質量分析の方法が開示される。第1の試料からの親イオンがデバイスを通され、親イオン質量スペクトルおよびフラグメンテーションイオン質量スペクトルが得られる。次いで、第2の試料からの親イオンがデバイスを通され、第2セットの親イオン質量スペクトルおよびフラグメンテーションイオン質量スペクトルが得られる。次いで、質量スペクトルは、比較され、2つの試料における所定の親イオンまたは所定のフラグメンテーションイオンのいずれか一方が異なって表現される場合、さらなる分析が行われて、2つの異なる試料において異なって表現されるイオンを同定しようとする。 (もっと読む)


61 - 80 / 116