説明

Fターム[5C038FF13]の内容

計測用電子管 (3,290) | 電子・イオン光学的装置 (382) | その他 (116)

Fターム[5C038FF13]に分類される特許

1 - 20 / 116


【課題】解決しようとする問題点は、LC/MSなどに用いられる大気圧イオン化(API)質量分析装置において、インターフェース部のクリーニング作業が複雑でユーザーの負担になる点である。
【解決手段】本発明は、電極表面が拭き取り材により自動的にクリーニングされるため、ユーザーの負担を低減させた(使い易い)質量分析装置の提供を最も主要な特徴とする。 (もっと読む)


【課題】試料に予備処理を施すことなく、チャージアップを防止することができる、原子プローブを用いた二次イオンによる分析装置および分析方法を提供する。
【解決手段】分析装置は、試料41に中性粒子ビームNを入射するための中性粒子ビーム源と、試料から放出された二次イオンを加速するイオン加速手段と、中性粒子ビームが入射されて試料から放出された二次イオンのエネルギーまたは質量を測定する測定装置とを備える。 (もっと読む)


【課題】短い距離でイオンビームを平行化できるイオンビームの平行化装置を提供する。
【解決手段】第1ベース層と、その上に形成された第1導電層と、これらの層を貫通する複数の第1貫通孔とを有する第1基板50aと、第2ベース層と、その上に形成された第2導電層と、これらの層を貫通し、複数の第1貫通孔と対応するように形成された複数の第2貫通孔とを有する第2基板50bとを備え、複数の第1貫通孔および第2貫通孔はそれぞれベース層内の壁面部分が電気絶縁性を有し、第1基板50a及び第2基板50bは、第1導電層及び第2導電層を同じ方向に向け且つ複数の第1貫通孔それぞれが対応する第2貫通孔と対向するように配置される。 (もっと読む)


【課題】本発明の好ましい実施形態では、真空チャンバは、ターボ分子ポンプで排気され、フォアライン排気は、隔膜ポンプによって提供される。そして、回転ポンプの使用を避けることによって、システムの全体のサイズおよび重量は、かなり低減でき、加えて、衝突冷却として周知の現象が、期待されるよりもはるかに低い圧力で、小型イオンガイドで高効率で生じる。
【解決手段】大気圧イオン化源に結合できる小型質量分析計が、表現される。イオンは、大気圧または低真空の領域から小さなオリフィスを通り抜け、それらが非常に短い差動排気イオンガイドを通過するとき、効率の良い衝突冷却を受ける。低エネルギーイオンの狭いビームは、小さな開口を通り抜けて、質量分析器を含む別個のチャンバに入る。 (もっと読む)


【課題】イオンを効果的に輸送する。
【解決手段】質量分析計の圧力の高い領域と低い領域との間でイオンを輸送するためのイオン移送装置は、イオン移送導管60を含んでいる。導管60は、相対的に圧力の高いチャンバ40に向いて開いている吸込口と、相対的に圧力の低いチャンバに向いて開いている排出口70とを備えている。導管60はまた、イオン移送チャネル115を取り囲む、少なくとも1つの側壁も備えている。側壁は、イオン移送チャネル115内から、導管60の側壁の外側の、圧力の低い領域へガスが流れるよう、側壁の長手方向に形成した複数の開口部140を含んでいる。 (もっと読む)


【課題】ETDプロダクトイオンまたはETDフラグメントイオンが有する比較的高い電荷状態を低減する質量分析計を提供する。
【解決手段】親イオンの電子移動解離フラグメンテーションによって生成された高電荷のフラグメントイオンの電荷状態が、当該フラグメントイオンをオクタヒドロピリミドールアゼピンなどの中性超強塩基試薬ガスと反応させることによってプロトン移動反応セル内で低減される質量分析計が開示される。 (もっと読む)


【課題】目的とするプロダクトイオンの検出感度の低下や、イオンの停滞によるゴーストピークの出現を回避する。
【解決手段】
コリジョンセル20内にCIDガスを導入するガス供給管31の接続個所を第1入射壁面22と第2入射壁面24との間に設け、第2イオン入射開口25の開口面積を第1イオン入射開口23の開口面積より大きくする。これにより、イオン入射側からイオン出射側に向けてCIDガスが吹き出す。イオン入射側とイオン出射側とのガスコンダクタンスの差によってコリジョンセル20内に生じるガスの流れに加えて、ガス吹き出しを後方に向けることで後方へのガス流が一層起こり易くなり、コリジョンセル20内でイオンの進行が促進されイオンの遅延が軽減される。 (もっと読む)


【課題】電子の導入効率およびイオンの導入効率が低く、高速の電子捕獲解離スペクトルを取得することが可能な電子捕獲解離反応装置を備えた質量分析装置を提供する。
【解決手段】高周波電場が印加される線形多重極電極と、線形多重極電極の軸方向の両端に配置され線形多重極電極の中心軸上に穴を具備し直流電圧が印加されて壁電場を生成する壁電極を有する線形イオントラップと、線形多重極電極の中心軸と同軸を含む磁場を発生し、線形イオントラップを取り囲む筒型の磁場発生手段と、線形多重極電極とは壁電極を挟んで反対側に設けられた電子源とを有し、電子源の電子発生部位が、磁場発生手段の発生する磁場の内部に設置された電子捕獲解離反応装置を備えた質量分析装置。 (もっと読む)


【課題】より小さくてコンパクトな質量分析システムを実現できるイオンガイドと衝突セルを提供する。
【解決手段】イオンガイドは複数のロッド201,202,203を備え、ロッドの各々は、第1の端部204,205,206と該第1の端部から離れたところにある第2の端部207,208,209とを有する。イオンガイドはさらに、対をなす隣接するロッドの間に接続されたインダクターと、対をなす隣接するロッド間に無線周波数(RF)電圧を印加するための手段と、ロッドの各々の長さに沿って直流(DC)電圧降下を与えるための手段を備える。RF電圧は、ロッドの間のある領域に多重極場を生成する。 (もっと読む)


【課題】0.1Torr未満の圧力で、サンプルおよび試薬ガスをイオン源へと流すことにより、化学イオン化によってサンプルをイオン化する。
【解決手段】イオン源を0.1Torr未満の圧力に維持しながら、電子イオン化により、試薬ガスをイオン源内でイオン化して、試薬イオンを生成する。0.1Torr未満の圧力で、サンプルを試薬イオンと反応させて、サンプルの生成イオンを生成する。質量分析のために、生成イオンをイオントラップへと移送する。 (もっと読む)


【課題】 デソープションイオン化方法において、試料台表面近傍のイオンを最大限に捕集する機構を提供する。
【解決手段】 生じたイオンの広がり以上の幅および高さをもつイオン取り込み口を設け、これを試料台に接するように位置させる。または、試料台に段差をつけて試料の積載された面よりも低い面を設け、生じたイオンの広がり以上の幅および高さをもつイオン取り込み口の開口部底面を、試料の積載された面よりも低く設置する。 (もっと読む)


【課題】イオンの遅延やイオンの停滞を効果的に防止することができる高周波イオンガイドを備える質量分析装置を提供する。
【解決手段】高周波電場によってイオンを収束させつつ後段へと輸送する高周波イオンガイド(20)は、イオン光軸(C)を取り囲むように配置される8本のロッド電極(21〜28)から成るが、各ロッド電極(21〜28)は、イオン入射側端面での内接円(29a)の半径r1よりもイオン出射側端面での内接円(29b)の半径r2が大きくなるように、イオン光軸(C)に対し傾けて配設される。これにより、ロッド電極(21〜28)で囲まれる空間にはイオンの進行方向に擬似ポテンシャルの大きさ又は深さの勾配が形成され、この勾配に従ってイオンは加速される。そのため、ガス圧が比較的高くイオンがガスに衝突する機会が多い場合であっても、イオンの減速を抑え、イオンの遅延や停止を防止することができる。 (もっと読む)


質量分析システムには、低圧分離領域および微分移動度分光計が含まれる。微分移動度分光計には、イオンフロー経路を画定する少なくとも一対のフィルタ電極が含まれ、このイオンフロー経路において、フィルタ電極は、サンプルイオンのイオン移動度特性に基づいてサンプルイオンの選択された部分を通過させるための電界を生成する。微分移動度分光計にはまた、DCおよびRF電圧をフィルタ電極の少なくとも1つに供給して、電界を生成する電圧源と、低圧分離領域を通過したサンプルイオンを受け取るイオン入口と、サンプルイオンの選択された部分を出力するイオン出口と、が含まれる。質量分光計は、サンプルイオンの選択された部分のいくらかまたは全てを受け取る。
(もっと読む)


【解決手段】開示されるイオンガイドにおいて、イオンガイドの出口側に軸方向直流電圧障壁103が形成される。一次RF電圧が電極に印加されると、イオンガイド内で径方向にイオンが閉じ込められる。電極には、さらに、補助RF電圧も印加される。補助RF電圧は、一次RF電圧よりも大きな軸方向反復長を有する。補助RF電圧の振幅は、時間とともに増大するため、イオンが不安定になり、軸方向直流電圧障壁をイオンが乗り越えるのに十分な軸方向運動エネルギーが得られる。イオンは、質量対電荷比の順に、イオンガイドから軸方向に放出される。 (もっと読む)


【課題】m/z比が広範囲であるイオンに最適化されたイオン移送条件を提供するために構成されたイオン輸送機器が必要とされている。
【解決手段】イオン輸送装置は、イオン入口端部と、イオン出口端部と、イオン入口端部からイオン出口端部まで長手方向軸に沿って配置された電極とを備えている。各電極は、長手方向軸に沿って変化するRF電界を印加するように構成され、RF電界は、イオン入口端部では2n重極の主要な第1多重極成分を備えた第1RF電界を有し、ここで、n≧3/2であり、また、イオン出口端部では主として2n重極の第2多重極成分を備えた第2RF電界を有し、ここで、n≧3/2およびn<nである。 (もっと読む)


【解決手段】開示されるイオンガイドは、複数の軸方向電極群を備え、各軸方向電極群は、複数の電極セグメントに径方向にセグメント化されたリング電極又は環状電極を備える。 (もっと読む)


飛行時間質量分光分析に有用な方法および分析器が提供される。荷電粒子を分離する方法が、2つの対向するミラーを備える分析器を提供するステップを含み、各ミラーが、軸zに沿って細長い内側および外側電場定義電極システムを備え、外側システムが内側システムを取り囲み、それらの間に分析器体積を画定し、ミラーが、z軸に沿って対向する電場を備える電場を分析器体積内部に生成し、電場のz軸に沿った強度が平面z=0で最小であり、方法がさらに、分析器を通して荷電粒子のビームを飛行させ、荷電粒子のビームが、分析器体積内部でz軸の周りを周回し、一方のミラーから他方のミラーに少なくとも1回反射し、それによりミラー内部に最大変向点を定義するステップを含み、最大変向点での電場のz軸に沿った強度がXであり、電場のz軸に沿った絶対強度が、平面z=0と各ミラーでの最大変向点の間でz軸に沿った方向の2/3以下にわたって|X|/2未満であり、方法がさらに、荷電粒子の飛行時間に従って荷電粒子を分離するステップと、複数のm/zを有する荷電粒子の少なくともいくつかを分析器から出射する、または複数のm/zを有する荷電粒子の少なくともいくつかを検出するステップとを含み、出射または検出するステップが、粒子がz軸の周りで同じ回数の周回を経た後に行われる。 (もっと読む)


分析器を使用して荷電粒子を分離する方法であって、荷電粒子のビームを分析器を通して飛行させ、荷電粒子のビームが、分析器内部で分析器の分析器軸(z)の方向で少なくとも1回の全振動を受けるとともに主飛行経路に沿って軸(z)の周りを周回するステップと、ビームが分析器を通って飛行するときにビームの円弧発散を制約するステップと、荷電粒子の飛行時間に従って荷電粒子を分離するステップとを含む方法が提供される。上記方法を行うための分析器も提供される。好ましくは、発散を制約するために少なくとも1つの円弧集束レンズが使用され、この円弧集束レンズは、ビームの各側に位置された1対の対向した電極を備えることがある。実質的に同じz座標に位置された円弧集束レンズのアレイを使用することができ、アレイ内の円弧集束レンズが円弧方向で離隔配置され、アレイがz軸の周りに少なくとも部分的に延在し、それにより、ビームが分析器を通って飛行するときにビームの円弧発散を複数回制約する。 (もっと読む)


試料分析システムは、試料分析システムから残留イオンを除去するためのイオン除去機構を組み込む。イオン除去機構は、イオン移動度フィルタを質量分析器計に接続する、イオン光学アセンブリの中に含むことができる。試料分析システムによって分析される試料は、イオン移動度フィルタの中へ進入させられ得る。イオン移動度フィルタは、試料のイオンを濾過して、濾過したイオン群をイオン光学アセンブリに通す。イオン光学アセンブリは、イオン群の中のイオンのうちのいくつかまたは全てが検出される質量分析器に、濾過したイオン群を輸送する。イオン除去機構は、次いで、第2の濾過した群を通過させる前に、第1の濾過した群から残った全てまたは実質的に全ての残留イオンをイオン光学系から除去する。
(もっと読む)


試料(101)を収容する手段と、試料(101)の表面からイオンを抽出する手段と、第1の方向における第1の曲率および第1の曲率中心(105)と第1の方向と垂直な第2の方向における第2の曲率および第2の曲率中心とによって等電位線が規定されるトロイダル静電界を生成するリフレクトロン(103)とを含む、特に質量分析計または原子プローブ顕微鏡型の、広い角度受け入れを有する質量分析装置(100)であって、第1の曲率中心(105)の近くに試料(101)が位置決めされていることを特徴とする。 (もっと読む)


1 - 20 / 116