説明

Fターム[5C038GG08]の内容

計測用電子管 (3,290) | イオン源の種類 (660) | 大気圧イオン源(API) (147)

Fターム[5C038GG08]に分類される特許

101 - 120 / 147


【課題】電圧を印加しながら、ノズルからサンプルを放出することでサンプルをイオン化するエレクトロスプレイイオン源、及びそれを用いた質量分析計において、ノズル先端に液玉が生じないように印加電圧を規定値に自動調整すること。
【解決手段】ESIチップの先端を監視しESIチップの先端に設定した半径以上の液玉ができると、エアー吹き装置に信号を送る受光センサ付きCCDカメラと、受光センサ付きCCDカメラから信号を受ける自動でエアーを吹くことにより液玉を吹き飛ばすエアー吹き装置と、エアー吹き装置が液玉を吹き飛ばすと信号を受け、設定した分だけ自動で電圧上昇し、液玉ができなくなるまで電圧上昇を繰り返す質量分析計。 (もっと読む)


【課題】極性基を持たない試料であっても好適にイオン化し、質量分析を行うことの出来るイオン化促進剤を提供することを目的とする。
【解決手段】本発明のイオン化促進剤は、Agイオンを含むことを特徴とする。これにより、試料となる目的化合物分子にAgイオンが付加することで、試料をイオン化することが出来る。このため、試料が極性基を持たない試料であっても好適にイオン化し、質量分析を行うことが可能となる。特に、試料となる目的化合物分子がπ電子共役系を有する場合、π電子とAgイオンの間に相互作用が存在するため、試料となる目的化合物分子にAgイオンは付加しやすくなり、好適にイオン化することが出来る。 (もっと読む)


【課題】質量分析計による検体からの検体イオン及び中性分子の採取を誘導し、それによって所定の面積又は容積から採取し、かつ化学的予備段階の必要なく固体又は液体を採取する装置を提供する。
【解決手段】本発明は、質量分析計による表面から検体イオン及び中性分子の採取を制限する装置であり、それによって所定の面積又は容積から採取する。本発明の様々な実施形態では、大気圧で又はその近くで脱離イオン化から所定の空間解像度で形成されたイオンを採取するのに、管が用いられる。本発明の一実施形態では、静電界は、分析されている試料の表面の近傍に位置決めされた個々の管又は複数の管のいずれかにイオンを誘導するのに用いられる。本発明の一実施形態では、分析のためにイオン及び中性分子を分光計に引き込むために、広直径試料採取管を真空注入口と共に用いることができる。本発明の一実施形態では、静電界と共に広直径試料採取管は、イオン収集の効率を改善する。 (もっと読む)


【課題】質量分析計による検体からの検体イオン及び中性分子の採取を誘導し、それによって所定の面積又は容積から採取し、かつ化学的予備段階の必要なく固体又は液体を採取する装置を提供する。
【解決手段】本発明は、質量分析計による表面から検体イオン及び中性分子の採取を制限する装置であり、それによって所定の面積又は容積から採取する。本発明の様々な実施形態では、大気圧で又はその近くで脱離イオン化から所定の空間解像度で形成されたイオンを採取するのに、管が用いられる。本発明の一実施形態では、静電界は、分析されている試料の表面の近傍に位置決めされた個々の管又は複数の管のいずれかにイオンを誘導するのに用いられる。本発明の一実施形態では、分析のためにイオン及び中性分子を分光計に引き込むために、広直径試料採取管を真空注入口と共に用いることができる。本発明の一実施形態では、静電界と共に広直径試料採取管は、イオン収集の効率を改善する。 (もっと読む)


【課題】 ガスイオンを効率よく長時間生成することができる装置を提供する。
【解決手段】 イオン発生器1は筐体にガス導入部3及びイオン放出口5を備え、筐体内に放電電極11及び接地電極13を備えている。イオン発生装置7はイオン発生器1のイオン放出口5にチャンバー9を接続したものである。放電電極11はガス導入部3から導入されたガスに高電圧を放電するものであり、一端は筐体内の上部に支持され、他端は垂直下方向に向けられている。接地電極13は筐体内で放電電極11に対向してイオン放出口5に配置されている。接地電極13は、接地側の面15に銅が形成されているステンレス製の円盤状電極であり、中心にはイオン放出口となるオリフィス19が形成されている。 (もっと読む)


ガス噴霧器チューブ(2)に取り囲まれているキャピラリーチューブ(3)を備えたエレクトロスプレーイオン化イオン源が開示される。1つ以上のワイヤー(4)がキャピラリーチューブ(3)内に設けられている。被分析物溶液がキャピラリーチューブ(3)に供給され、噴霧ガスがガス噴霧器チューブ(2)に供給される。 (もっと読む)


第1サイクルで実行するステップとして、第1イオン捕獲装置内に試料イオンを貯めるステップと、第1イオン捕獲装置内に貯まっているイオンをそれとは別のイオン選別装置に入射するステップと、そのイオン選別装置内でイオンを選別するステップと、イオン選別装置内で選別されたイオンをフラグメント化装置へと出射させるステップと、イオン選別装置を迂回しつつフラグメント化装置から第1イオン捕獲装置へとイオンを送り返すステップと、第1イオン捕獲装置から出射されたイオン若しくはその一部又はそれからの派生物を第1イオン捕獲装置内に受け入れるステップと、受け入れたイオンを第1イオン捕獲装置内に貯めるステップと、を有するマススペクトロメトリ方法を提供する。
(もっと読む)


【課題】イオン化されなかった又は途中で中性化された分子が検出器に入射することによるバックグラウンドノイズを低減する。
【解決手段】高真空状態に維持される分析室21内で四重極質量フィルタ22、23の手前に紫外光照射ランプ25を配設し、到来するイオンを主とする粒子流に高エネルギーの紫外光を照射する。粒子流にはイオン化室11内でイオン化されなかった試料分子や一旦イオンになったものの輸送途中で中性化された分子が混じっているが、こうした分子は紫外光の照射を受けてイオン化する。したがって、四重極質量フィルタ22、23に導入される分子の量を減らすことができ、それによってバックグラウンドノイズを抑えることができる。また、イオンの量が増加することで感度が向上する。 (もっと読む)


第1サイクルで実行するステップとして、イオン出射開口とイオン移送開口が別の部位にある第1イオン捕獲装置内に試料イオンを貯めるステップと、貯まっているイオンをイオン出射開口を介し出射させるステップと、出射されたイオンを第1イオン捕獲装置とは別の場所にあるイオン選別装置に送るステップと、そのイオン選別装置内でイオンを選別するステップと、第1イオン捕獲装置から出射されたイオンのうちその選別を経たもの又はそれからの派生物をイオン選別装置から第1イオン捕獲装置に送り返すステップと、返ってくるイオンをそのイオン移送開口を介し第1イオン捕獲装置内に受け入れるステップと、受け入れたイオンを第1イオン捕獲装置内に貯めるステップと、を有するマススペクトロメトリ方法を提供する。
(もっと読む)


【課題】個別粒子を生成し、その個別粒子を後続の分析(例えば質量分析)または操作のために標的位置に送達する方法及び機器を提供すること。
【解決手段】個別粒子を生成する粒子生成器は、前記個別粒子として検体及び溶媒を含む個別液滴を生成する液滴生成器である。浮揚装置は、前記個別粒子を電気力学的に浮揚させる。液滴の脱溶媒が生じ、液滴のクーロン分裂が起こって、より小さい液滴になる。電極アセンブリは、後続の分析または操作のために、前記浮揚装置から離間した標的位置に向けて、前記浮揚装置から前記個別粒子を送達する。 (もっと読む)


【課題】非定形試料のための前処理の不要な大気圧イオン化方法および試料保持装置を提供する。
【解決手段】励起ガスが透過する薄膜、または試料を含浸させ得る繊維体や多孔質体に試料を包むか染み込ませるかして試料に励起ガスを当て、試料を励起ガスと反応させてイオン化させるようにした。また、上下左右方向に移動可能かつ前面側と後面側を連通する連通部を備えた保持具を用い、試料を励起ガスが透過する薄膜、または試料を含浸させ得る繊維体や多孔質体に包むか染み込ませるかして該連通部に保持し、試料の前方から試料に励起ガスを当て、これにより試料をイオン化して試料の後方に置かれた質量分析計のイオン導入口に導入させるようにした。 (もっと読む)


【課題】未知の混合物試料を、一連の測定操作により高速で計測することが可能で、操作者の手間を低減することの可能な質量分析計を提供する。
【解決手段】混合物試料を液体クロマトグラフ1により分離して導入する試料を分析する質量分析計であって、分離された試料をイオン源7によりイオン化し、この生成した試料のイオンをイオン導入細孔14a、14bから取り込んで当該イオンを質量分析部により分析するが、この質量分析部をイオントラップ型の質量分析を行うイオントラップ型質量分析部により構成すると共に、さらに、制御装置41により、分離されて導入される試料を、前記イオントラップ型質量分析部により、正イオン計測と負イオン計測との一連の測定操作により特定する。または、計測の最初に行われる正イオン計測、負イオン計測、判別により、試料の極性を自動的に選択・設定し、高速で高精度の計測を可能とし、かつ、操作者の手間を低減する。 (もっと読む)


本発明の種々の実施形態において、装置は、準安定の中性励起状態種を含む担体ガスの作用によって生成されたイオンを効率的に収集して質量分析計へ伝送することができる。本発明の一実施形態では、装置は、ジェットセパレータと組み合わせてイオン化ソースを合体し、過剰な担体ガスを効率的に除去する一方、質量分析計の真空チャンバーへイオンを効率的に移送することができる。本発明の一実施形態では、検体の位置と質量分析計の位置との間から長い距離において準安定の中性励起状態種を含む担体ガスにより発生されるイオンの改良された収集が可能となる。 (もっと読む)


【課題】圧力レベルの異なる2つのイオン源を切り替えて測定できる質量分析装置を提供する。
【解決手段】GCカラム1により分離された試料ガスを分岐し、第1のイオン源(たとえばAPCIイオン源)2及び第1のイオン源より圧力レベルの低い第2のイオン源(例えばEIイオン源)3にそれぞれ別個に導入する。また、APCIイオン源2に導入する試料ガス流量をEIイオン源3に導入する試料ガス流量より多くなるようにして、各イオン源の圧力が維持できるようにした上で、感度面でバランスよく、各イオン化による分析を行えるようにする。 (もっと読む)


レーザ脱離イオン源は、1つ又は複数のイオンガイドを使用することによりイオンサンプリング効率性及び測定感度を高め、イオン標的から放出されるプルーム中のイオンを効率的に捕獲し、該イオンを開口部経由で下流の真空チャンバ内に誘導する。2つのRF多極イオンガイドを使用する一構成では、イオン標的に隣接して配置されている第1のRF多極イオンガイドは、プルームの大部分を捕獲するのに十分な大きさであるように選択され、一方、第1の多極イオンガイドと開口部との間に配置されている第2のRF多極イオンガイドは、イオンを開口部内に集束するのに役立つようにより小さい寸法を有する。第1のRF多極イオンは、プルーム中のイオンを第2のRF多極イオンガイド内へ誘導し、次いで、第2のRF多極イオンガイドはイオンが開口部を通過して下流の真空チャンバ内に入るようにイオンを集束する。
(もっと読む)


【課題】大気圧雰囲気下で粒子線を試料に照射してイオン化を行う場合、粒子線の照射範囲を絞ることができないため空間分解能を高めることが困難であった。
【解決手段】大気圧雰囲気にあるイオン化室1内でノズル8から噴射される粒子線の経路に小孔6を穿設した粒子線遮蔽板5を配設し、該小孔6を通過した一部の粒子線を試料3に照射する。そして、試料3上の粒子線の照射部位4から発生したイオンをイオン輸送管7で収集して質量分析部に送る。さらに、この遮蔽板5の位置を固定し試料3を保持する試料ステージ2を二次元面内で移動させることにより、試料3上での粒子線の照射部位4を移動させる走査を行い、それにより試料3上の所定範囲の定性情報や定量情報の二次元分布を取得可能とする。 (もっと読む)


1つ以上のイオン源を1つ以上の下流側デバイスへインターフェースするために質量分析において使用される多重デバイスインターフェース。該多重デバイスインターフェースは、多重極ロッドセットに印加される電位に依存して、入力ロッドセットまたは出力ロッドセットのどちらかとして構成される3つ以上の多重極ロッドセットを含む。入力ロッドセットとして構成される多重極ロッドセットは、1つ以上のイオン源に連結されることにより、該イオン源から生成されたイオンを受け入れて該イオンを出力多重極ロッドセットとして構成された少なくとも1つの多重極ロッドセットへ伝達する。該出力多重極ロッドセットは、下流側デバイスに連結され、生成されたイオンを該デバイスへ伝達できる。
(もっと読む)


【課題】 良好なスペクトル安定性及び装置全体の感度が得られる質量分析システムで使用されるイオン源を提供する。
【解決手段】 本発明のイオン源は、(a)イオンを生成して該イオンをイオン化領域に送るイオン化装置と、(b)前記イオン化装置によって生成されたイオンを収集するための、前記イオン化装置に隣接した収集導管と、(c)前記イオン化装置によって生成されたイオンを脱溶媒和するためにガスを供給する第1のガス源と、(d)イオン化領域に所定の流速でガスを供給する第2のガス源とからなることを特徴とする。 (もっと読む)


イオントラップのイオンを操作するための方法は、イオンを蓄積するステップと、空間的に圧縮するステップと、質量電荷比に従って選択されたイオンを放出するステップとを有する。イオントラップは、導入口と、イオンを閉じ込めて、空間的に圧縮するための第1端部および第2端部を有するアームと、イオンを第2端部から放出するための放出口とを有する。アームは、2対の対向電極を有し、イオントラップのどの断面でも四重極電場ポテンシャルを形成する。対向電極と電極の断面の間の距離は、第1端部から第2端部にかけて広がっている。電極は、テーパ状の円筒形のロッド、または、双曲線の断面であってもよい。放出するために選択されたイオンは、第2の(より広い)端部の領域のなかで空間的に圧縮される。イオントラップは、直交放出または軸放出を有する1つアーム、または、直交放出のための中央インサートを有する2本のアームを備える。 (もっと読む)


【課題】ナノスプレーキャピラリニードル、1組の電極、および質量分析器へのキャピラリ入力部を位置合わせする方法を提供すること。
【解決手段】この電極システムは、微細加工技術を利用して、2つの別々のチップからなるアセンブリとして形成される。各チップは、絶縁プラスチック基板上に形成される。第1のチップは、キャピラリエレクトロスプレーニードルおよびAPI質量分析器入力部用の機械的位置合わせフィーチャを、1組の部分電極と共に担持する。第2のチップは、1組の部分電極を担持する。完全な電極システムは、これらのチップがスタック構成で組み立てられるときに形成され、テイラーコーンのきっかけをつくることができ、かつ集束させることによって電気的中性物からイオンを分離し得るアインツェルレンズを含む。 (もっと読む)


101 - 120 / 147