説明

Fターム[5E040AB02]の内容

硬質磁性材料 (8,571) | 磁性材料(無機化合物) (408) | 鉄化合物 (353) | FeOx (45)

Fターム[5E040AB02]に分類される特許

1 - 20 / 45


【課題】表面荷電量が大きく粒径が均一であり、水中分散性に優れた超常磁性ナノ粒子及びその製造方法、すなわち、流体力学的サイズが20nm以下と小さく、単分散分布を示す超常磁性ナノ粒子及びその製造方法を提供する。
【解決手段】本発明による超常磁性ナノ粒子は、20nm以下の超常磁性ナノ結晶と、前記超常磁性ナノ結晶の表面に結合されており、3つ〜5つのカルボキシル基を有する分子とを含み、本発明による超常磁性ナノ粒子の製造方法は、pH10〜14の塩基性水溶液を準備する段階と、3つ〜5つのカルボキシル基を有する分子と2価遷移金属及び3価鉄の前駆体を溶解した混合溶液を製造する段階と、前記塩基性水溶液に前記混合溶液を添加する段階とを含む。 (もっと読む)


【課題】 磁気ヒステリシス曲線の角型比を大きくすることによって磁気ヒステリシス損失を大きくすることで優れた発熱効率を示す、癌焼灼治療用強磁性酸化鉄粒子を提供すること。
【解決手段】 本発明の癌焼灼治療用強磁性酸化鉄粒子は、長径が30〜300nm、厚みに対する長径の比が1.5〜30である板状の形状を有し、保磁力が50〜500Oe、飽和磁化が30〜80emu/g、磁気ヒステリシス曲線の角型比が0.20〜0.50である磁気特性を有することを特徴とする。 (もっと読む)


【課題】磁場のない場合の分散性に優れ、磁場下での回収速度が速く、光特性などの機能性に優れ、光特性などのカスタマイズ機能を付与することのできる複合ビーズを提供する。
【解決手段】超常磁性クラスタ10・ナノ粒子30・多孔体複合ビーズは、超常磁性クラスタと、クラスタを囲む多孔体ビーズ20と、多孔体ビーズの外面に近い内部の同心球S上に放射状に分布しているナノ粒子とを含み、ナノ粒子が、発光ナノ粒子、超常磁性ナノ粒子、金属ナノ粒子、及び金属酸化物ナノ粒子からなる群から選択される少なくとも1つであり、超常磁性クラスタ・ナノ粒子・多孔体複合ビーズの製造方法を含む。 (もっと読む)


【課題】金属として地球上の可採レベルの高い元素(クラーク数の大きい元素)を使用して又は少なくともクラーク数の小さい金属元素の使用量を低下させて材料自体は耐摩耗性が低いと考えられていた材料であっても特定の処理によって耐摩耗性を向上し得る摺動材料の製造方法を提供する。
【解決手段】反反応により磁性体に変態する弱磁性材料を出発材料として用意する工程と、該材料に外場を付与し固化成形することで構成材料の配向した成形体を得る工程と、該配向状態にある材料を反応により磁性体へ変態させる反応工程とを含み、得られた配向成形体の摺動特性の異方性に応じた摺動方向で使用し得る異方性摺動部材の製造方法、および前記の製造方法によって得られる異方性摺動部材。 (もっと読む)


【解決手段】本発明は、静磁場での膠芽腫治療用生体適合性磁性ナノ粒子の使用に関する。本発明に係る磁性ナノ粒子は、既に病理過程の診断に数年にわたって使用されている。本発明によれば、前記生体適合性磁性ナノ粒子が、転移性癌細胞を集合体として外科的処置又は温熱療法で取り扱えるようにするため、外部磁場下(磁性軸)における前記癌細胞の目的とされた変位のために使用される。 (もっと読む)


【課題】 多様な被着基材でも着磁層が形成でき適宜の磁束密度で着磁させて安価で且高い電磁波防護作用を保持する電磁波防護材の提供。
【解決手段】 強磁性体素材を微粉体となし且不動態化処理をした不動態化微粉体とビヒクル、水及び分散材とにより着磁性塗着材を形成したうえ、適宜の被着基材の一側面若しくは両側面に所要の塗着量を以って塗着し且乾燥させて着磁層を形成し、而して所望の磁束密度で着磁させる。 (もっと読む)


【課題】希土類元素を用いないでナノコンポジット磁石を作製すること。
【解決手段】磁性粒子10は、ε−Feを含む硬磁性相のコア部11と、Feを含み、かつコア部11の少なくとも一部を被覆する軟磁性相のシェル部12と、を有する。磁性粒子10は、ε−Feの粉末の表面を還元することにより作製される。このように、磁性粒子10は、希土類元素を用いず、Feの酸化物を還元することにより作製できる。そして、この磁性粒子10を用いて焼結磁石やボンド磁石を作製すれば、希土類元素を用いないナノコンポジット磁石を作製できる。 (もっと読む)


【課題】還元・窒化に要する時間を短縮し、磁気特性に優れた窒化鉄系磁性微粒子を効率良く製造する方法を提供する。
【解決手段】本発明の窒化鉄系磁性微粒子の製造方法では、まず、酸化鉄微粒子を用意する(第1工程)。次に、水素を含むプラズマによって前記酸化鉄微粒子に対する還元処理を行い、前記酸化鉄微粒子からα−Fe金属微粒子を形成する(第2工程)。更に、窒素を含むプラズマによってα−Fe金属微粒子に対する窒化処理を行い、α−Fe金属微粒子からFe162化合物微粒子を形成する(第3工程)。第2工程と第3工程との間において前記α−Fe金属微粒子を大気に暴露しない、窒化鉄系磁性微粒子の製造方法。 (もっと読む)


【課題】 本発明は、凝集粒子が小さく、トルエン中での分散性が良好であって、黒色塗料、ゴム・樹脂組成物用として好適な表面処理された磁性酸化鉄粒子粉末を提供する。
【解決手段】 磁性酸化鉄粒子表面に特定のシランカップリング剤が4〜16μmol/m被覆された平均粒子径0.05〜0.70μmの表面処理された磁性酸化鉄粒子粉末は、核となる磁性酸化鉄粒子を水性媒体中で疎水化処理した後、流動層乾燥を行い、その後に熱処理を行う、又は、核となる磁性酸化鉄粒子をホイール型混練機又はらいかい機で疎水化処理した後、振動機構を有する乾燥機でボール等の媒体を入れて熱処理と粉砕を同時に行うことで得ることができる。 (もっと読む)


【課題】 本発明に係る黒色磁性酸化鉄粒子粉末は、黒色であることから、塗料用、樹脂用、印刷インキ等の黒色着色顔料として好適であり、また、高電圧領域で抵抗が高く、吸湿性が低く、さらに分散性に優れていることにより磁性トナー用の黒色磁性粒子として用いた場合には、高温高湿環境下における画像濃度が高いトナーを構成できる。
【解決手段】 黒色磁性酸化鉄粒子の平均粒子径が0.05μm〜2.0μmであり印加電圧100Vの電気抵抗値が1×10Ω・cm以上である黒色磁性酸化鉄粒子粉末である。 (もっと読む)


【課題】溶媒分散性の高い、基板等への固定化が容易なシリカ被覆ナノ粒子を提供する。
【解決手段】シリカ被覆ナノ粒子は、ナノ粒子からなるコアと、前記コアの周囲に前記コアを被覆するように設けられた珪素化合物からなるシェルと、前記シェルの周囲に付着した炭素数7以上の第1のシランカップリング剤と、を有し、前記第1のシランカップリング剤は、一端は前記シェル中のSi元素と結合し、他端は反応性官能基を具備することを特徴とする。
(もっと読む)


【課題】磁性粒子の配向を制御したバルク体を得ることが可能である異方性磁性材料の製造方法を提供する。
【解決手段】反応により磁性体に変態する弱磁性材料を出発材料として用意する工程と、該材料に外場を付与することで材料の構成材料を配向させる配向工程と、該配向状態にある材料を前記反応により磁性体へ変態させる反応工程と、を含むことを特徴とする異方性磁性材料の製造方法。 (もっと読む)


【課題】 本発明は、長軸長0.1μm以下のオキシ水酸化鉄粒子を製造する新規な方法を提供することを目的とする。さらには、微細な粒子であっても粒子形状が整い、大きさのバラツキも少ないオキシ水酸化鉄粒子の製造方法を提供することをも目的とする。
【解決手段】 本発明のオキシ水酸化鉄粒子の製造方法は、第一鉄を含む懸濁液を用意する工程(A)と、懸濁液に直径が0.05〜500μmの微細気泡を生成させて反応溶液とし、反応溶液における第一鉄を酸化してオキシ水酸化鉄粒子を生成する工程(B)と、を備えることを特徴とする。 (もっと読む)


【課題】制御の容易な簡素なプロセスによって粒径の揃ったナノレベルのマグネタイト微粒子を製造すること。
【解決手段】本発明によって提供されるマグネタイト微粒子を主体とする磁性材料の製造方法は、沸点200℃以上である脂肪族アミンの液体中に、鉄(III)アセチルアセトナート錯体を添加して原料溶液を調製する工程と、前記原料溶液を加熱し、該溶液中に酸化鉄の粒子核を生成する工程と、前記生成した粒子核を含む溶液を更に加熱し、前記粒子核を成長させて所望する大きさの酸化鉄微粒子を形成する工程と、前記酸化鉄微粒子を回収する工程とを包含する。 (もっと読む)


【課題】熱伝導率及び耐熱性が高い磁性酸化鉄粒子を提供すること。
【解決手段】磁性酸化鉄粒子は、ケイ素を含有した磁性酸化鉄のコア粒子の表面に、ケイ素及びアルミニウムを含む被覆層が形成されたものである。該粒子は八面体の形状を有している該粒子をその表面から溶解させていき、該粒子に含まれる全Fe量に対して10重量%のFeが溶解した時点における、溶解した総Fe中に含まれるFe(II)の量と、該総Fe量との比X(前者/後者)を、0.34≦X≦0.50とした。 (もっと読む)


【課題】凝集粗粒が少なく易分散性であり、色相や電気特性に優れているマグネタイト粒子粉末を提供すること。
【解決手段】ケイ素を含有しており、一次粒子平均径が0.10〜0.30μmであり、レーザー回折散乱式粒度分布測定によるD90値が0.40〜1.00μmであり、かつ粒子表面から10質量%中における総Fe量に対するFe(2価)の割合(A%)と、残りの90質量%中における総Fe量に対するFe(2価)の割合(B%)との比A/Bが0.70〜1.30であるマグネタイト粒子からなることを特徴とするマグネタイト粒子粉末。 (もっと読む)


【課題】本発明は、磁性体コア−セラミックシェルナノ結晶及びこれを製造する方法、詳しくは、高結晶化度、均一なサイズ、高化学的安全性を有する磁性体コア−セラミックシェル(例えば、マグネタイト(Fe)コア−リン酸カルシウム(Ca(PO)シェル)ナノ結晶及びこれを製造する方法を提供する。
【解決手段】コア−シェル構造は、マグネタイト前駆体を還元してコアに該当するマグネタイトシードを形成した後、連続的にCa(PO前駆体を還元してマグネタイト上にCa(POをコーティングする過程により合成し、それにより多機能複合磁性体コア−セラミックシェルを得ることができる。 (もっと読む)


これらは、ポリマー粒子類に薬理学的に活発な物質も恐らく組み込まれた構造体に使用可能な磁気金属酸化物のナノ粒子類を記述する。 (もっと読む)


【課題】粒子形状および粒子サイズがよく揃い、磁気特性が優れた酸化鉄粒子を得ることのできる簡便な製造方法を提供すること。
【解決手段】マグネタイトを含んで成る酸化鉄粒子の製造方法であって、(i)鉄イオンとしては3価の鉄イオンのみを含んで成る水溶液と還元性の水溶性有機液体と塩基とを混合して混合液を得る工程、および(ii)混合液を加圧下で加熱し、混合液中で酸化鉄粒子を形成する工程を含んで成る製造方法。 (もっと読む)


【課題】煩雑で粒径分布コントロールも困難な逆ミセル法を経ることなく、既存の粉末原料を用いてε−Fe23結晶を生成させる手法を提供する。
【解決手段】オキシ水酸化鉄(α−FeOOH)の粒子を水蒸気が混合された水素ガス雰囲気等の弱還元雰囲気下において300〜600℃の範囲の温度で熱処理することにより立方晶酸化鉄を生成させる熱処理工程Aと、熱処理工程Aで得られた粒子を大気等の酸化雰囲気下において700〜1300℃の範囲の温度で熱処理することにより立方晶酸化鉄からε−Fe23結晶を生成させる熱処理工程Bを有するε−Fe23結晶の製法が提供される。上記熱処理工程Aと熱処理工程Bでは、いずれもSi酸化物に覆われた状態の粒子に対して熱処理を施すことが望ましい。 (もっと読む)


1 - 20 / 45