説明

Fターム[5E040HB17]の内容

硬質磁性材料 (8,571) | 製造・処理方法・装置 (1,455) | 粉末製造 (314)

Fターム[5E040HB17]に分類される特許

1 - 20 / 314



【課題】磁気特性と熱的安定性に優れたフッ化物磁性材料を提供する。
【解決手段】Th2Zn17構造を有するSm−Fe系材料を、反応条件を制御しつつフッ素化し、c軸とa軸の比R(=c/a)および格子体積Vについて、R≦1.455かつV≧800(Å3)とすることで、磁気特性と熱的安定性に優れた磁性材料を得ることができる。 (もっと読む)


【課題】Nd−Fe−B系の希土類永久磁石において焼結後に残存する窒素濃度を800ppm以下とすることにより、保磁力を向上させることを可能とした希土類永久磁石及び希土類永久磁石の製造方法を提供する。
【解決手段】Nd−Fe−B系の希土類永久磁石において、磁石原料を希ガス雰囲気下で乾式粉砕により粉砕し、その後、同じく希ガス雰囲気下で圧粉成形した成形体を800℃〜1180℃で焼成を行うことによって焼結後に残存する窒素濃度が800ppm以下、より好ましくは300ppm以下の永久磁石1を製造するように構成する。 (もっと読む)


【課題】配向度が高く、もって残留磁化の高い希土類磁石に資する焼結体と、この焼結体を形成する磁性粉末の製造方法を提供する。
【解決手段】ナノ結晶組織のNd-Fe-B系の主相である結晶粒g2と、該主相の周りにある粒界相からなる焼結体Sであって、該焼結体Sに異方性を与える熱間塑性加工が施され、さらに保磁力を向上させる合金が拡散されて形成される希土類磁石の前駆体である焼結体において、焼結体Sを構成する結晶粒g2は、容易磁化方向(c軸方向)に直交する方向から見た結晶粒g2の平面形状がc軸方向の辺とこれに直交する方向(a軸方向)の辺からなる長方形もしくはこれに近似した形状となっている。 (もっと読む)


【課題】希土類磁石前駆体の焼結体を形成する磁性粉体の製造方法に関し、組織内に粗大粒を含まない磁性粉体を精緻かつ効率的に選別し、最適なナノサイズの結晶粒からなる組織を有する磁性粉体を製造することのできる希土類磁石前駆体の焼結体を形成する磁性粉体の製造方法を提供する。
【解決手段】ナノ結晶組織のNd-Fe-B系の主相である結晶粒と粒界相からなる焼結体Sであって、焼結体Sに異方性を与える熱間塑性加工が施され、保磁力を向上させる合金が拡散されて形成される希土類磁石の前駆体である焼結体Sを形成する磁性粉体pの製造方法であり、金属溶湯を冷却ロールR上に吐出して急冷リボンBを製作し、50μm〜1000μmの粒度範囲内に粉砕して0.0003mg〜0.3mgの質量範囲の磁性粉体を製作し、該質量範囲の磁性粉体が2mT以下の表面磁束密度を有する磁石に吸着するか否かを検査し、吸着しない磁性粉体pを選別して焼結体Sを形成する磁性粉体とする。 (もっと読む)


【課題】永久磁石用として使用されるCu含有希土類−鉄−硼素系合金粉末とそれを還元拡散法により低コストで効率的に製造する方法を提供。
【解決手段】希土類酸化物粉末もしくは希土類酸化物粉末および希土類金属粉末と、含鉄粉末、含硼素粉末からなる原料粉末に前記酸化物粉末を還元するのに十分な量の還元剤を混合し、還元拡散法によりCu含有希土類−鉄−硼素系合金粉末を製造する方法であって、原料粉末として、さらに含銅粉末を組成範囲がCu換算で0.003〜1.5重量%となるように混合し、該混合物を不活性ガス雰囲気下で900℃〜1200℃の温度で0.5時間以上保持して熱処理し、得られた反応生成混合物を湿式処理した後、乾燥することを特徴とするCu含有希土類−鉄−硼素系合金粉末の製造方法;この製造方法により得られたCu含有希土類−鉄−硼素系合金粉末によって提供。 (もっと読む)


【課題】 本発明は、特に微粒子の強磁性窒化鉄粒子粉末及び該製造方法を提供する。
【解決手段】 強磁性窒化鉄粒子粉末の製造方法において、鉄化合物の還元工程及び窒化工程を同一工程において行うものであり、還元工程における還元剤として金属ハイドライド、金属ハライド、金属ボロハイドライドから選ばれる少なくとも1種以上の化合物を用いるとともに、窒化工程の窒素源として窒素含有化合物を用いる強磁性窒化鉄粒子粉末の製造方法であり、該製造方法によって得られた強磁性窒化鉄粒子粉末を用いた異方性磁石、ボンド磁石及び圧粉磁石である。 (もっと読む)


【課題】湿式粉砕の粉砕性を向上させることにより、磁気性能を向上させた希土類永久磁石及び希土類永久磁石の製造方法を提供する。
【解決手段】粗粉砕された磁石粉末と一般式M−(OR)x(式中、MはNd、Al、Cu、Ag、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nbの内、少なくとも一種を含む。Rは炭素鎖長が2〜16の炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされる有機金属化合物とを有機溶媒中で湿式粉砕することにより、磁石原料を粉砕して磁石粉末を得るとともに該磁石粉末の粒子表面に有機金属化合物を付着させる。その後、有機金属化合物を付着させた磁石粉末を成形して焼結を行うことによって永久磁石1を製造する。 (もっと読む)


【課題】湿式粉砕を用いた場合であっても、焼結前に磁石粒子の含有する炭素量を予め低減させることができ、焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となった永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粗粉砕された磁石粉末を、有機溶媒中でビーズミルにより粉砕し、その後、圧粉成形した成形体を大気圧より高い圧力に加圧した水素雰囲気下において200℃〜900℃で数時間保持することにより水素中仮焼処理を行う。続いて、焼成を行うことによって永久磁石1を製造する。 (もっと読む)


【課題】 本発明は、特に微粒子の強磁性窒化鉄粒子粉末の製造方法を提供する。
【解決手段】 本発明は、強磁性窒化鉄粒子粉末の製造方法において、金属ハイドライド、金属ハライド、金属ボロハイドライドから選ばれる少なくとも1種以上の化合物と鉄化合物とを混合し、熱処理して得られる金属鉄と窒素含有化合物とを混合し、次いで、熱処理することを特徴とする強磁性窒化鉄粒子粉末の製造方法であり、該製造方法によって得られた強磁性窒化鉄粒子粉末を用いた異方性磁石、ボンド磁石及び圧粉磁石である。 (もっと読む)


【課題】表面荷電量が大きく粒径が均一であり、水中分散性に優れた超常磁性ナノ粒子及びその製造方法、すなわち、流体力学的サイズが20nm以下と小さく、単分散分布を示す超常磁性ナノ粒子及びその製造方法を提供する。
【解決手段】本発明による超常磁性ナノ粒子は、20nm以下の超常磁性ナノ結晶と、前記超常磁性ナノ結晶の表面に結合されており、3つ〜5つのカルボキシル基を有する分子とを含み、本発明による超常磁性ナノ粒子の製造方法は、pH10〜14の塩基性水溶液を準備する段階と、3つ〜5つのカルボキシル基を有する分子と2価遷移金属及び3価鉄の前駆体を溶解した混合溶液を製造する段階と、前記塩基性水溶液に前記混合溶液を添加する段階とを含む。 (もっと読む)


【課題】分離対象物から分離回収した希土類磁石の純度を向上させることができる希土類磁石の分離回収方法、希土類磁石の製造方法、及び回転電機の製造方法を得る。
【解決手段】回転子鉄心2と回転子鉄心2に接着剤4を介して固定された永久磁石(希土類磁石)3とを含む回転子(分離対象物)1から希土類磁石3を分離回収する希土類磁石の分離回収方法では、まず、水素分圧が1Pa以下の真空又は非酸化性ガス中で回転子1を昇温させる(昇温工程)。この後、水素分圧が1Pa以上で15Pa以下の真空又は非酸化性ガス中で、900℃以上で1000℃以下の温度に回転子1の温度を維持する(所定温度域工程)。この後、水素分圧が1Pa以下の真空又は非酸化性ガス中で回転子1を降温させる(降温工程)。 (もっと読む)


【課題】磁気特性に優れる窒化鉄:α"Fe16N2を主成分とする窒化鉄粉末、及びこの窒化鉄粉末を生産性よく製造可能な製造方法を提供する。
【解決手段】磁場を印加した状態で鉄粉をカルボン酸溶液中で溶解してゲルを作製し、ゲルを乾燥してゲルから鉄錯体を生成する。鉄錯体の有機成分を除去して酸化鉄を生成する。更に、酸化鉄を還元・窒化して、窒化鉄:α"Fe16N2を生成することで、窒化鉄粒子からなる窒化鉄粉末が得られる。原料にマイクロオーダーの鉄粉を利用可能であるため、経時的に変質し難く、原料粉末のハンドリング性に優れる上に、安定して窒化鉄を生成可能であり、生産性に優れる。得られた窒化鉄粒子は、微細で、アスペクト比が大きく、形状磁気異方性により磁気特性に優れる。 (もっと読む)


【課題】還元拡散法により得られる希土類−遷移金属系合金粉末の減磁曲線の角形性を改善し、永久磁石性能を高めることができる希土類−遷移金属系合金粉末とその製造方法を提供。
【解決手段】希土類酸化物粉末と、遷移金属粉末および/またはその酸化物粉末と、粒状または粉末状の、アルカリ金属、アルカリ土類金属およびこれらの水素化物から選ばれる少なくとも1種の還元剤とを混合し、不活性雰囲気中で該混合物を850〜1200°Cで1〜10時間保持して希土類−遷移金属系合金を含む反応生成混合物を得る第1の工程、この反応生成混合物を300℃以下に冷却した後、水素ガスを導入し、水素ガス分圧20〜40kPaの雰囲気中において700〜900°Cの温度で1〜20時間保持する第2の工程、得られた反応生成混合物を真空もしくは水素ガス分圧10kPa未満の雰囲気下500〜900°Cで10分〜20時間熱処理する第3の工程、得られた熱処理物を水で洗浄し、還元剤を含む副生物を除去して希土類−遷移金属系合金を回収する第4の工程、洗浄後の希土類−遷移金属系合金を150〜400°Cの非酸化性雰囲気下で乾燥する第5の工程とを含む希土類−遷移金属系合金粉末の製造方法などにより提供。 (もっと読む)


【課題】α"Fe16N2を主成分とする鉄窒化物粒子の含有量が多い窒化鉄材、及びその製造方法を提供する。
【解決手段】α"Fe16N2を主成分とし、短軸の平均長さが100nm以下の鉄窒化物粒子からなる原料粉末とバインダとを混合して、平均粒径1μm以上の造粒粉を作製する。造粒粉を成形型に充填した後、加圧成形して成形体(窒化鉄材)を作製する。加圧成形は、成形型内を0.9気圧以下に排気しながら、バインダの分解温度±20℃の温度に加熱した状態、かつ2T以上の磁場を印加した状態で行う。加熱により溶融したバインダの存在下で強磁場を印加すると、鉄窒化物粒子の移動や回転を容易にして結晶方位を特定の方向に配向でき、加熱及び排気によりバインダを除去すると、鉄窒化物粒子の充填率を高められる。この製造方法は、鉄窒化物粒子の含有量が多く、配向組織を有する窒化鉄材が得られ、この窒化鉄材は、磁気特性に優れる。 (もっと読む)


【課題】バージン磁粉に対する再生磁粉の混合割合を増大させることができ、もって資源の有効利用を図る。
【解決手段】超急冷法によって得たバージン磁粉を含む原料を熱間塑性加工することにより製造された磁石体の、使用不可部分に対して水素吸蔵粉砕処理を施して磁石製造用の再生磁粉を得る。そして、再生磁粉をバージン磁粉に対し全体量の40質量%以上で80質量%以下の割合で混合して混合磁粉とし、当該混合磁粉を熱間塑性加工して磁石体を得る。 (もっと読む)


【課題】 磁気ヒステリシス曲線の角型比を大きくすることによって磁気ヒステリシス損失を大きくすることで優れた発熱効率を示す、癌焼灼治療用強磁性酸化鉄粒子を提供すること。
【解決手段】 本発明の癌焼灼治療用強磁性酸化鉄粒子は、長径が30〜300nm、厚みに対する長径の比が1.5〜30である板状の形状を有し、保磁力が50〜500Oe、飽和磁化が30〜80emu/g、磁気ヒステリシス曲線の角型比が0.20〜0.50である磁気特性を有することを特徴とする。 (もっと読む)


【課題】HDDR法を用いて良好な角型性と高い保磁力を有するR−T−B系永久磁石を提供する。
【解決手段】50%体積中心粒径が1μm以上10μm未満であり、R214B相を含むR−T−B系合金粉末(RはNdおよび/またはPrを50原子%以上含む希土類元素、TはFe、またはFeとCo)と、粒径75μm未満のR’(R’はNd、Pr、Dy、Tbから選ばれる1種以上)、またはR’−M系合金(MはAl、Ga、Cu、Co、Ni、Cr、Fe、Si、Geから選ばれる1種以上)の粉末との混合粉末の圧粉体を200℃以上600℃以下の水素雰囲気中で熱処理を施す第一熱処理工程と、圧粉体に対し水素雰囲気中で650℃以上1000℃以下の温度で熱処理を施す第二熱処理工程と、真空または不活性雰囲気中で圧粉体に対し650℃以上1000℃以下の温度で熱処理を施す第三熱処理工程とを実行する。 (もっと読む)


【課題】粒子を小さくしても粒子同士の凝集を抑制して粒子の独立性を高くすることができ、磁性塗料に使用した場合に分散性を向上させることができるとともに、嵩密度を高くすることができる、金属磁性粉末およびその製造方法を提供する。
【解決手段】オキシ水酸化鉄(α−FeOOH)のスラリーにカルボキシル基を有する化合物からなる分散剤を添加してオキシ水酸化鉄のスラリーを湿式粉砕し、得られたオキシ水酸化鉄の粒子の表面に(イットリウムを含む)希土類元素から選ばれる1種以上を含む焼結防止成分を被着させた後にオキシ水酸化鉄を還元することにより、金属磁性粉末を製造する。 (もっと読む)


【課題】磁気記録のトリレンマを解消するための手段を見出すこと。
【解決手段】Feの置換元素として2価元素のみをFe含有量100原子%に対して0.5〜5.0原子%含有し、かつ活性化体積が1200〜1800nm3の範囲であることを特徴とする六方晶フェライト磁性粒子からなる磁気記録用磁性粉。Fe置換成分として2価元素成分のみを含み、かつFe含有量100原子%に対する2価元素含有量が0.5〜5.0原子%である原料混合物を使用するガラス結晶化法により前記六方晶フェライト磁性粒子を得ることを特徴とする前記磁気記録用磁性粉の製造方法。非磁性支持体上に前記記載の磁気記録用磁性粉および結合剤を含む磁性層を有する磁気記録媒体。 (もっと読む)


1 - 20 / 314