説明

Fターム[5E062CC05]の内容

コア、コイル、磁石の製造 (4,690) | 永久磁石−形状 (308) | 形状が特定されるもの (301) | 粒子、粉末 (90)

Fターム[5E062CC05]に分類される特許

1 - 20 / 90


【課題】スラリーの移送容易さを確保しつつ、スラリー中の凝集物を除去することができるマグネット製造装置及びマグネット製造方法を提供する。
【解決手段】マグネット製造装置1は、粉砕機2と第1フィルタ付きストックタンク5との間に、スラリー中の凝集物をフィルタによって分離するフィルタ装置8が設けられている。フィルタ装置8は、スラリー内の粉砕流体を、流体供給部9から供給される流体で流動化させ、スラリーの移送方向A1に対して直交方向に延びる複数のフィルタ孔7を有するフィルタ部14によって、スラリー内の凝集物を分離する。 (もっと読む)


【課題】焼結体〜配向磁石の製造過程で受ける熱エネルギーを低減でき、結晶粒の粗大化を抑制し、製造効率を向上できる希土類磁石の製造装置と製造方法を提供する。
【解決手段】断面積が相対的に大きな第1の中空4aと相対的に小さな第2の中空4bが連通する中空を具備するダイ4と、第1の中空内で移動自在な第1のパンチ2と、第2の中空内で移動自在な第2のパンチ3と、第1、第2のパンチ2,3を相互に接近させ、もしくは離間させる主駆動部5,6と、第1、第2のパンチ2,3に対してダイ4を相対的に移動させる副駆動部7と、を少なくとも備え、ダイ4と、第1、第2のパンチ2,3にて形成されたキャビティC内に希土類磁石材料となる粉末pが充填されるようになっており、第1、第2のパンチ2,3の移動制御とダイ4の移動制御、および加熱制御によって希土類磁石を製造する製造装置10である。 (もっと読む)


【課題】配向度が高く、もって残留磁化の高い希土類磁石に資する焼結体と、この焼結体を形成する磁性粉末の製造方法を提供する。
【解決手段】ナノ結晶組織のNd-Fe-B系の主相である結晶粒g2と、該主相の周りにある粒界相からなる焼結体Sであって、該焼結体Sに異方性を与える熱間塑性加工が施され、さらに保磁力を向上させる合金が拡散されて形成される希土類磁石の前駆体である焼結体において、焼結体Sを構成する結晶粒g2は、容易磁化方向(c軸方向)に直交する方向から見た結晶粒g2の平面形状がc軸方向の辺とこれに直交する方向(a軸方向)の辺からなる長方形もしくはこれに近似した形状となっている。 (もっと読む)


【課題】希土類磁石前駆体の焼結体を形成する磁性粉体の製造方法に関し、組織内に粗大粒を含まない磁性粉体を精緻かつ効率的に選別し、最適なナノサイズの結晶粒からなる組織を有する磁性粉体を製造することのできる希土類磁石前駆体の焼結体を形成する磁性粉体の製造方法を提供する。
【解決手段】ナノ結晶組織のNd-Fe-B系の主相である結晶粒と粒界相からなる焼結体Sであって、焼結体Sに異方性を与える熱間塑性加工が施され、保磁力を向上させる合金が拡散されて形成される希土類磁石の前駆体である焼結体Sを形成する磁性粉体pの製造方法であり、金属溶湯を冷却ロールR上に吐出して急冷リボンBを製作し、50μm〜1000μmの粒度範囲内に粉砕して0.0003mg〜0.3mgの質量範囲の磁性粉体を製作し、該質量範囲の磁性粉体が2mT以下の表面磁束密度を有する磁石に吸着するか否かを検査し、吸着しない磁性粉体pを選別して焼結体Sを形成する磁性粉体とする。 (もっと読む)


【課題】永久磁石用として使用されるCu含有希土類−鉄−硼素系合金粉末とそれを還元拡散法により低コストで効率的に製造する方法を提供。
【解決手段】希土類酸化物粉末もしくは希土類酸化物粉末および希土類金属粉末と、含鉄粉末、含硼素粉末からなる原料粉末に前記酸化物粉末を還元するのに十分な量の還元剤を混合し、還元拡散法によりCu含有希土類−鉄−硼素系合金粉末を製造する方法であって、原料粉末として、さらに含銅粉末を組成範囲がCu換算で0.003〜1.5重量%となるように混合し、該混合物を不活性ガス雰囲気下で900℃〜1200℃の温度で0.5時間以上保持して熱処理し、得られた反応生成混合物を湿式処理した後、乾燥することを特徴とするCu含有希土類−鉄−硼素系合金粉末の製造方法;この製造方法により得られたCu含有希土類−鉄−硼素系合金粉末によって提供。 (もっと読む)


【課題】 本発明は、特に微粒子の強磁性窒化鉄粒子粉末及び該製造方法を提供する。
【解決手段】 強磁性窒化鉄粒子粉末の製造方法において、鉄化合物の還元工程及び窒化工程を同一工程において行うものであり、還元工程における還元剤として金属ハイドライド、金属ハライド、金属ボロハイドライドから選ばれる少なくとも1種以上の化合物を用いるとともに、窒化工程の窒素源として窒素含有化合物を用いる強磁性窒化鉄粒子粉末の製造方法であり、該製造方法によって得られた強磁性窒化鉄粒子粉末を用いた異方性磁石、ボンド磁石及び圧粉磁石である。 (もっと読む)


【課題】磁気特性に優れる窒化鉄:α"Fe16N2を主成分とする窒化鉄複合材、及びこの窒化鉄複合材を生産性よく製造可能な製造方法を提供する。
【解決手段】鉄粉をカルボン酸溶液中で溶解してゾルを作製し、ニッケルなどの金属やアルミナなどの非金属といった無機材料からなる多孔質体の孔に上記ゾルを充填する。磁場を印加した状態で、ゾルが充填された多孔質体を乾燥し、ゾルから鉄錯体を生成すると共に鉄成分の配向性を高める。磁場を印加した状態で、鉄錯体の有機成分を除去して酸化鉄を生成すると共に鉄成分の配向性を高める。更に、磁場を印加した状態で、酸化鉄を還元・窒化して、窒化鉄:α"Fe16N2を生成すると共に、窒化鉄の配向性を高める。上記工程により、多孔質体の孔に窒化鉄粒子が担持された窒化鉄複合材が得られる。 (もっと読む)


【課題】還元拡散法により得られる希土類−遷移金属系合金粉末の減磁曲線の角形性を改善し、永久磁石性能を高めることができる希土類−遷移金属系合金粉末とその製造方法を提供。
【解決手段】希土類酸化物粉末と、遷移金属粉末および/またはその酸化物粉末と、粒状または粉末状の、アルカリ金属、アルカリ土類金属およびこれらの水素化物から選ばれる少なくとも1種の還元剤とを混合し、不活性雰囲気中で該混合物を850〜1200°Cで1〜10時間保持して希土類−遷移金属系合金を含む反応生成混合物を得る第1の工程、この反応生成混合物を300℃以下に冷却した後、水素ガスを導入し、水素ガス分圧20〜40kPaの雰囲気中において700〜900°Cの温度で1〜20時間保持する第2の工程、得られた反応生成混合物を真空もしくは水素ガス分圧10kPa未満の雰囲気下500〜900°Cで10分〜20時間熱処理する第3の工程、得られた熱処理物を水で洗浄し、還元剤を含む副生物を除去して希土類−遷移金属系合金を回収する第4の工程、洗浄後の希土類−遷移金属系合金を150〜400°Cの非酸化性雰囲気下で乾燥する第5の工程とを含む希土類−遷移金属系合金粉末の製造方法などにより提供。 (もっと読む)


【課題】バージン磁粉に対する再生磁粉の混合割合を増大させることができ、もって資源の有効利用を図る。
【解決手段】超急冷法によって得たバージン磁粉を含む原料を熱間塑性加工することにより製造された磁石体の、使用不可部分に対して水素吸蔵粉砕処理を施して磁石製造用の再生磁粉を得る。そして、再生磁粉をバージン磁粉に対し全体量の40質量%以上で80質量%以下の割合で混合して混合磁粉とし、当該混合磁粉を熱間塑性加工して磁石体を得る。 (もっと読む)


【課題】希土類焼結磁石のHcJを向上させつつBrの低下を抑制すること。
【解決手段】この希土類焼結磁石の製造方法は、希土類元素を含む粉末を調整する工程と(ステップS1〜ステップS3)、得られた粉末を混合する工程と(ステップS4)、混合粉末を磁場中において成形することにより、成形体を得る工程と(ステップS5)、この成形体を焼結して焼結体を得る工程と(ステップS6)、この焼結体に、重希土類元素の単体と、重希土類元素の化合物との少なくとも一方を付着させる工程と(ステップS7)、重希土類元素の単体と、重希土類元素の化合物との少なくとも一方が付着した焼結体を誘導加熱する工程と(ステップS8)、を含む。 (もっと読む)


【課題】耐環境性に優れたボンド磁石等が得られる希土類磁石粉末を提供する。
【解決手段】本発明の希土類磁石粉末は、希土類元素(R)とホウ素(B)と遷移元素(TM)との正方晶化合物であるRTM14型結晶の集合体である基本磁石粒子と、この基本磁石粒子の表面を被覆する熱硬化性樹脂が熱硬化してなる熱硬化樹脂被膜と、により構成される被覆磁石粒子からなることを特徴とする。この希土類磁石粉末を用いて製造されたボンド磁石は、耐酸化性に優れた熱硬化樹脂被膜で被覆された被覆磁石粒子からなるため耐環境性に優れ、厳しい環境下に曝されても磁気特性が劣化し難い。こうして本発明の希土類磁石粉末を用いれば、非常に耐環境性に優れるボンド磁石が得られる。 (もっと読む)


【課題】水素粉砕粉の酸素含有量を調整することができ、また、酸素含有量が調整された低酸素水素粉砕粉と通常酸素水素粉砕粉の水素粉砕後の水素粉砕粉の回収、水素粉砕粉への潤滑剤の添加、水素粉砕粉と潤滑剤の混合を共通の容器で行うことができる希土類系磁石用原料合金の水素粉砕粉の製造方法及び製造装置の提供。
【解決手段】 回収室内を減圧した後に、処理容器内の水素粉砕粉を回収室内に排出し、水素粉砕粉を回収室内に排出した後に、回収室内に不活性ガス及び/又は酸素含有ガスを導入し、回収室内を所定圧力及び所定酸素濃度とした後に、水素粉砕粉を回収容器に回収する。回収容器内で水素粉砕粉に潤滑剤を添加した後、回収容器を冷却しながら水素粉砕粉と潤滑剤を混合する。 (もっと読む)


【課題】合金粉末全体に窒素を均一に供給することにより、均一に窒化され磁気特性が向上した希土類−遷移金属−窒素磁石粉末の製造方法、工業的量産性に適した製造装置及び得られる希土類−遷移金属−窒素磁石粉末、それを用いたボンド磁石用組成物、並びにボンド磁石を提供する。
【解決手段】下記の一般式(1)で表されるピニングタイプの希土類−遷移金属−窒素系磁石粉末を得る製造方法において、該粉末を窒化する際、窒化炉1に設けられた2箇所以上の供給口10から窒化用ガスを流通することを特徴とする磁石粉末の製造方法などにより上記課題を解決する。RαFe(100−α−β−γ)βγ・・・式(1)(式(1)中、Rは希土類元素の一種または二種以上、MはCu、Mn、Co、Cr、Ti、NiおよびZrからなる群から選択される一種または二種以上、α、β、γは原子%であり、4≦α≦18、0.3≦β≦23、15≦γ≦25を満たす。) (もっと読む)


【課題】高温環境でも高い保磁力を有する希土類磁石が得られる磁性部材、この磁性部材の原料に適した粉末成形体、成形性に優れる磁性部材用粉末を提供する。
【解決手段】磁性部材用粉末を構成する各磁性粒子1は、40体積%未満の希土類元素の水素化合物(NdH2)3と、残部がFeとFe-B合金とを含む鉄含有物2からなる。鉄含有物2の相中に水素化合物3が離散して存在する。磁性粒子1の表面に希土類元素を含む希土類供給源材(例えば、水素化合物:DyH2)からなる供給源粒子4aを含む耐熱前駆層4を具える。磁性粒子1中に鉄含有物2の相が均一的に存在することで、上記粉末は成形性に優れる。耐熱前駆層4を具える粉末で形成した粉末成形体を熱処理して、合金粒子5の表面に耐熱保磁力層6が形成された磁性部材が得られる。この磁性部材は、高温環境でも高い保磁力を有する希土類磁石が得られる。 (もっと読む)


【課題】スムーズに押出材料を押し出すことができ、良好な磁場配向を有する成形体を製造可能な磁場押出成形装置を提供する。
【解決手段】押出材料2Eが押出口2cから所定量押し出され、略平板状の成形体8が成形される。成形体8は、搬送部3により、第1の磁場配向部4、二次成形部5、仮乾燥部6、第2の磁場配向部7の順に搬送される。第1の磁場配向部4では、成形体8に対し磁場を印加する。二次成形部5では、成形体8は略半円筒状に成形される。仮乾燥部6では、成形体8は可撓性を損なわない程度に乾燥される。第2の磁場配向部7では、第1の磁場配向部4で発生する磁場よりも強い磁場が成形体8に印加される。 (もっと読む)


【課題】Dy等を内部まで効率的に拡散させ、保磁力を大幅に向上させた希土類焼結磁石が得られる製造方法を提供する。
【解決手段】本発明の希土類焼結磁石の製造方法は、一種以上の希土類元素(R)とBとFeを含む磁石合金粉末を成形した成形体を焼結させてなる希土類焼結磁石の製造方法であって、RFe14B型金属間化合物の生成エネルギー(E1)が磁石合金粉末中に最も多く含まれる希土類元素である主元素(Rm)よりも小さく焼結体へ拡散させる希土類元素である拡散元素(Rd)よりも大きい希土類元素である中間元素(Rc)を、Rdの拡散前の焼結体の少なくとも表面部に存在させる拡散予備工程を備えることを特徴とする。Dy等のRdを拡散させる前の焼結体中に、Y等のRcを存在させておくことにより、Rdが焼結体の内部深くまで拡散して希土類焼結磁石の保磁力効率が大幅に改善される。 (もっと読む)


【課題】高温環境でも高い保磁力を有する希土類磁石が得られる磁性部材、この磁性部材の原料に適した粉末成形体、成形性に優れる磁性部材用粉末を提供する。
【解決手段】磁性部材用粉末を構成する各磁性粒子1は、40体積%未満の希土類元素の水素化合物(NdH2)3と、残部がFeとFe-B合金とを含む鉄含有物2からなる。鉄含有物2の相中に水素化合物3が離散して存在する。磁性粒子1の表面に希土類元素を含む希土類供給源材(例えば、水素化合物:DyH2)からなる供給源粒子4aと、酸素の透過係数が小さい樹脂からなる樹脂層4bとを含む耐熱前駆層4を具える。磁性粒子1中に鉄含有物2の相が均一的に存在することで、上記粉末は成形性に優れる。耐熱前駆層4を具える粉末で形成した粉末成形体を熱処理して、合金粒子5の表面に耐熱保磁力層6が形成された磁性部材が得られる。この磁性部材は、高温環境でも高い保磁力を有する希土類磁石が得られる。 (もっと読む)


【課題】Dy、Tb、Coなどの希少金属を多量添加することなく焼結によりバルク化して高温保磁力を有する新規なNdFeB系磁石の製造方法を提供する。
【解決手段】溶湯から急冷により非晶質組織とし、得られた非晶質組織の急冷薄帯(以下、急冷リボンと表示することもある。)を焼結、次いで熱間加工時の加熱により結晶化するとともに異方化する異方性希土類磁石の製造方法。 (もっと読む)


【課題】高い保磁力を確保しつつ優れた角形性を有する希土類磁石を製造する。
【解決手段】下記の組成式:RvFewCoxByMz、R:Yを含む1種以上の希土類元素、M:Ga、Zn、Si、Al、Nb、Zr、Ni、Cu、Cr、Hf、Mo、P、C、Mg、Vの少なくとも1種、13≦v≦20、w=100−v−x−y−z、0≦x≦30、4≦y≦20、0≦z≦3、で表される希土類磁石組成の溶湯を急冷して、ナノ結晶から成る組織を有する急冷薄片を形成する工程、および上記急冷薄片を加圧下で焼結して、ナノ結晶から成る組織を有する焼結体にする工程、を含む角形性に優れた希土類磁石の製造方法。 (もっと読む)


【課題】簡易な生産設備及び製造工程で金属アルコキシドを製造することが可能となり、製造コストについても削減することを可能とした永久磁石及び永久磁石の製造方法を提供する。
【解決手段】製造対象となる金属アルコキシドを構成する成分であるアルコールと同一のアルコールに塩化物を溶解、或いは塩化水素ガスを吹き込むことによって電解液を生成し、製造対象となる金属アルコキシドを構成する成分の金属とFeとを所定の重量割合(例えば1:1)で含むフェロアロイを陽極に使用するとともに、同じフェロアロイ、カーボン、白金又はステンレスを陰極として使用し、電解液により電気分解を行うことによって金属アルコキシドのアルコール溶液を得る。そして、得られた金属アルコキシドのアルコール溶液を用いて永久磁石を製造する。 (もっと読む)


1 - 20 / 90