説明

Fターム[5E078AB05]の内容

電気二重層コンデンサ等 (17,975) | 種別 (2,895) | 電気化学キャパシタ (2,456) | 疑似容量を用いたもの (135) | 導電性高分子を用いたもの (30)

Fターム[5E078AB05]に分類される特許

1 - 20 / 30


【課題】蓄電デバイスに好適な蓄電材料を提供する。
【解決手段】本発明の蓄電材料は、繰り返し単位を有する重合体を含む。重合体の繰り返し単位は、テトラカルコゲノフルバレン骨格と、置換基を有していてもよいフェニレン基とを含む。テトラカルコゲノフルバレン骨格及びフェニレン基が重合体の主鎖を形成している。テトラカルコゲノフルバレン骨格の4位の炭素原子とフェニレン基のメタ位の炭素原子とがC−C結合を形成している。 (もっと読む)


【課題】引出導体にビア導体部を用いた場合でも、該ビア導体部が設けられた部分がリフロー半田付け時の温度変化や実装後の温度変化等に伴う熱膨張収縮に基づいて生じる応力によって破損することを防止できる電気化学デバイスを提供する。
【解決手段】第1引出導体50は板状部22(上層22a)の厚さ方向に沿うビア導体部52を有していて、該ビア導体部52は板状部22の中心からずれた位置に設けられている。つまり、ビア導体部52は、リフロー半田付け時の温度変化や実装後の温度変化等に伴う熱膨張収縮に基づいて生じる応力が集中し易い板状部22の中心CTを避けて設けられているので、該熱膨張収縮に基づいて生じる応力が板状部22に加わっても、該板状部22のビア導体部52が設けられた部分が該応力によって破損する恐れを確実に回避することができる。 (もっと読む)


【課題】引出導体にビア導体部を用いた場合でも、該ビア導体部が設けられた部分がリフロー半田付け時の温度変化や実装後の温度変化等に伴う熱膨張収縮に基づいて生じる応力によって破損することを防止できる電気化学デバイスを提供する。
【解決手段】第1引出導体50は板状部22(上層22a)の厚さ方向に沿うビア導体部52を有していて、該ビア導体部52は板状部22の中心からずれた位置に設けられている。つまり、ビア導体部52は、リフロー半田付け時の温度変化や実装後の温度変化等に伴う熱膨張収縮に基づいて生じる応力が集中し易い板状部22の中心CTを避けて設けられているので、該熱膨張収縮に基づいて生じる応力が板状部22に加わっても、該板状部22のビア導体部52が設けられた部分が該応力によって破損する恐れを確実に回避することができる。 (もっと読む)


【課題】本発明の導電性高分子組成物を用いることにより、得られる導電性高分子層の強度(耐久性)を向上させることができるため、伸縮動作が要求されるアクチュエータに利用することができ、有用である。また、導電性高分子層と集電体とを積層または接着により一体化した導電性高分子電極等を容易に作製することができ、蓄電デバイスなどへの応用が可能であり、有用である。
【解決手段】導電性高分子単量体、フェノール性水酸基含有化合物、及び、電解質アニオンを含有することを特徴とする導電性高分子組成物。 (もっと読む)


【課題】電解液中の水に起因する電解液の特性低下を抑制することができ、また、フィルムパッケージタイプの電気化学デバイスに対しては、静電容量等の特性を低下させないように、回路基板への半田付けのためにリフロー炉に投入された場合のフィルムパッケージの膨張及び変形を抑制することのできる非水電解液及びこれを用いた電気化学デバイスを提供する。
【解決手段】この非水電解液は、非水溶媒と、非水溶媒に溶解している電解質とを有する非水電解液であって、非水溶媒が、環状オルトカルボン酸エステルを含有しており、環状オルトカルボン酸エステルが電解液中の水と反応することにより、非水溶媒の主成分である例えばプロピレンカーボネートが水との反応により分解することを防ぎ、電解液の特性低下が抑制される。 (もっと読む)


【課題】従来のプロトンポリマー電池の負極やキャパシタ電極よりも単位質量当たりの電荷貯蔵容量が高く、かつ、化学安定性の高い電極材料を得ること。
【解決手段】以下の式で表される、ベンズイミダゾベンゾフェナントロリンラダー(BBL)ポリマーを電極材料とする。これにより、従来のポリフェニルキノキサリン(PPQ)と比べて、単位質量当たりの電荷貯蔵容量を顕著に高めることができ、更に化学的安定性をも高めることができる。
当該電極材料を用いることによって、より高性能のプロトンポリマー電池やキャパシタを作製することができる。
【化1】
(もっと読む)


【課題】高温環境で長時間使用でき、リフロー耐熱性に優れる非電気二重層型キャパシタを提供する。
【解決手段】フィブリル化全芳香族ポリアミド繊維A、平均繊維径0.6〜4.0μmのガラス繊維Bの少なくとも一方を必須成分として含有し、且つ繊度0.06〜0.5dtexの非フィブリル化繊維Cを1種類以上含有する湿式不織布からなるセパレータを具備してなることを特徴とする非電気二重層型キャパシタ。 (もっと読む)


【課題】高容量でエネルギー密度が高く且つ寿命特性が良好な電気化学素子を与えることができる電極活物質を提供する。
【解決手段】本発明の電極活物質は、ポリフルオレンを構成するフルオレン環が実質的に2位と7位で重合しており且つ鎖末端のフルオレン環がハロゲン置換基を有している精密重合ポリフルオレンから誘導される精密重合ポリフルオレン誘導体からなる電極活物質であって、上記精密重合ポリフルオレン誘導体が上記精密重合ポリフルオレンの鎖末端のフルオレン環のハロゲン置換基をフェニル基又はフルオレニル基で置換した誘導体であることを特徴とする。従来の導電性高分子を含む電極を有する電気二重層キャパシタは、炭素材料を含む電極を有する電気二重層キャパシタに比較して短寿命であったが、本発明の電極活物質を含む電極を有する電気二重層キャパシタは、炭素材料を含む電極を有するキャパシタと同等の寿命特性を示す。 (もっと読む)


【課題】導電性高分子を分極性電極として使用する電気二重層キャパシタにおいて、より簡易に、より高い静電容量およびより優れたサイクル特性を備える電気二重層キャパシタを与えるポリアニリン炭素複合体を提供する。
【解決手段】アニリンおよび/またはその誘導体と、下記式(I)の化合物(I)と、ドーパントとを非極性有機溶媒中で酸化重合し、その後、脱ドープ処理および炭素系材料との複合化処理を施して得られる、数平均分子量が10,000〜1,000,000であるポリアニリン共重合体と、前記炭素系材料とが複合化したポリアニリン炭素複合体によって、上記課題を解決できる。
(もっと読む)


活性炭材料の製造方法は、天然の非リグノセルロース性炭素前駆体と無機化合物の水性混合物を形成し、前記混合物を不活性または還元性雰囲気下で加熱し、前記加熱した混合物を冷却して第1の炭素材料を形成し、前記無機化合物を除去して活性炭材料を生成する、各工程を有してなる。活性炭材料は、高エネルギー密度装置に使用するための、改善された炭素系電極を形成するのに適している。
(もっと読む)


【課題】導電助剤を含む電池用組成物において、導電助剤の導電性を阻害せずに分散安定化を図ること、炭素材料である導電助剤の電解液に対する濡れ性を向上させること、並びに、本発明の電池用組成物を用いて作製される電池の電池性能を向上させること。
【解決手段】塩基性官能基を有する有機色素誘導体、塩基性官能基を有するアントラキノン誘導体、塩基性官能基を有するアクリドン誘導体、及び塩基性官能基を有するトリアジン誘導体からなる群から選ばれる1種以上の誘導体、又は、酸性官能基を有する有機色素誘導体、及び酸性官能基を有するトリアジン誘導体からなる群から選ばれる1種以上の誘導体、と、ビニルアミド系樹脂と、導電助剤としての炭素材料と、を含んでなる電池用組成物により解決。 (もっと読む)


本発明は、メソ多孔性ナノ構造疎水性材料を含む第1層と、第1層上に配置されたメソ多孔性ナノ構造親水性材料を含む第2層とからなる電極に言及する。さらなる態様において、本発明は、メソ多孔性ナノ構造疎水性材料とメソ多孔性ナノ構造親水性材料との混合物を含む単一層、または多孔性ナノ構造材料を含む単一層であって、多孔性ナノ構造材料の表面に結合される金属ナノ構造体を含有する単一層からなる電極に言及する。本発明は、これらの電極の製造、並びに金属空気電池、超コンデンサーおよび燃料電池におけるそれらの電極の使用にさらに言及する。
(もっと読む)


【課題】 導電性高分子とイオン液体からなる導電性高分子コンデンサ電解質は、イオン液体の修復能により耐圧特性に優れるものの、インピーダンス特性の低下および容量発現率が不十分という課題があった。
【解決手段】 特定のアニオン成分を有するイオン液体を1種以上、あるいは特定のアニオン成分を有するイオン液体と塩の組み合わせを用いることにより、高耐圧特性を維持しつつインピーダンス特性低下が少なく、かつ高容量発現率のに導電性高分子電解質を提供することができる。 (もっと読む)


【課題】電気化学素子における作動電圧、容量、エネルギー密度を高くすることができる電極を提供する。
【解決手段】本発明の電極は、少なくとも1種のチオフェンオリゴマーと少なくとも1種のカーボンナノチューブとの複合体を含有する活物質層を有する複合体電極あって、上記チオフェンオリゴマーの重合度が4〜20の範囲であり、上記カーボンナノチューブの比表面積が600〜2600m/gの範囲であることを特徴とする。本発明の複合体電極は、p−ドーピングの酸化還元電位が従来の導電性高分子を使用した電極のものとほぼ同等であるかあるいはより高く、n−ドーピングの酸化還元電位が従来の導電性高分子を使用した電極のものよりも低く、従来の電極と比較して大幅に増加した容量を有する上に、低インピーダンス特性を有する。そのため、電気化学素子の作動電圧、容量、エネルギー密度を従来のものより高くすることができる。 (もっと読む)


【課題】作動電圧が高く、高容量でエネルギー密度が高い電気化学素子を与えることができる電極活物質を提供する。
【解決手段】本発明の電極活物質は、フルオレン環が実質的に2位と7位で重合しており且つフェニレン環が実質的に同じ位置でフルオレン環と結合している精密重合フルオレン−フェニレン交互共重合体から成る。この電極活物質は、塩化鉄(III)を触媒とした重合で得られる不規則な位置で重合しているバルク重合ポリフルオレンから成る電極活物質に比較して、大幅に増加した容量を有する上に、p−ドーピングの酸化還元電位が高くなる。そのため、精密重合フルオレン−フェニレン交互共重合体から成る電極活物質により、作動電圧が高く、高容量でエネルギー密度が高い電気化学素子が得られる。 (もっと読む)


【課題】作動電圧が高く、高容量でエネルギー密度が高い電気化学素子を与えることができる電極を提供する。
【解決手段】少なくとも1種のフルオレン−フェニレン交互共重合体と少なくとも1種のカーボンナノチューブとの複合体を含有する活物質層を有する複合体電極あって、交互共重合体のフルオレン環が実質的に2位と7位でフェニレン環に結合しており、フェニレン環のフルオレン環に対する結合位置が実質的に同じであり、カーボンナノチューブの比表面積が600〜2600m/g以上であることを特徴とする。塩化鉄(III)を触媒とした重合で得られるような不規則な位置で重合しているバルク重合ポリフルオレンと比表面積が小さいカーボンナノチューブとを含有する活物質層を有する電極に比較して、容量が大幅に増加する上に、p−ドーピングの酸化還元電位が高くなる。 (もっと読む)


【課題】作動電圧が高く、高容量でエネルギー密度が高い電気化学素子を与えることができる電極を提供する。
【解決手段】ポリフルオレンとカーボンナノチューブとの複合体を含有する活物質層を有する複合体電極あって、ポリフルオレンのフルオレン環が実質的に2位と7位で重合しており、カーボンナノチューブの比表面積が600〜2600m/gの範囲であることを特徴とする。本発明の複合体電極は、フルオレン環が不規則な位置で重合しているバルク重合ポリフルオレンと比表面積が小さいカーボンナノチューブとを用いた複合体電極に比較して、大幅に増加した容量を有する上に低インピーダンス特性を有する。また、本発明の複合体電極は、バルク重合ポリフルオレンと比表面積が小さいカーボンナノチューブとを用いた複合体電極と同様の高電圧特性を有する。そのため、作動電圧が高く、高容量でエネルギー密度が高い電気化学素子を得ることができる。 (もっと読む)


【課題】エネルギー密度及び出力密度の大きなファラデー容量型キャパシタを提供する。
【解決手段】フルオレン基を基本骨格とする導電性高分子を含有する正極と、6員環の中に窒素を1個以上含む複素環を基本骨格とする導電性高分子を含有する負極と、が電解液に接している。前記正極に含有されている、フルオレン基を基本骨格とする導電性高分子は、導電性の電極材料に電解重合で析出させてなる。前記負極に含有されている、6員環の中に窒素を1個以上含む複素環を基本骨格とする導電性高分子は、酸に溶解させた状態からpHを上昇させることにより析出させた析出型導電性高分子微粉末が導電性の電極材料と混合されている。 (もっと読む)


【課題】大きな電流で放電させても電圧の低下が少ない電極材料及びその製造方法を提供する。
【解決手段】還元状態においてラジカル部分構造をとる高分子ラジカル材料が溶解又は膨潤し且つ導電性材料が分散又は溶解してなる原料溶液を、その高分子ラジカル材料と導電性材料が溶解又は膨潤しない溶液に滴下又は注いでその高分子ラジカル材料と導電性材料とからなる沈殿物を生成する方法により、大きな電流で放電させても電圧の低下が少ない高分子ラジカル材料・導電性材料複合体を製造する。得られた電極材料は、導電性材料が高分子ラジカル材料の内部に取り込まれた形態の沈殿物となっている。 (もっと読む)


【課題】 本発明は、充放電を繰り返しても抵抗増加が少なく、セル容量の低下の少ないハイブリッドキャパシタを与えるハイブリッドキャパシタ用電極シートに関する。
【解決手段】 活物質と結着剤を含有する電極層を金属繊維からなる集電体上に形成してなるハイブリッドキャパシタ用電極シートにおいて、ガラス転移温度が−80〜20℃のエラストマーを結着剤として用いることで優れた結着性を示し、電解液に浸漬した際の電極層の集電体からの剥離が起きにくく、また、充放電を繰り返しても抵抗増加が少なく、容量の低下も少ないハイブリッドキャパシタ用電極シートを得ることができる。 (もっと読む)


1 - 20 / 30