説明

Fターム[5F048BF06]の内容

MOSIC、バイポーラ・MOSIC (97,815) | 配線・電極・コンタクト (11,486) | 材料 (4,535) | シリサイド (1,808)

Fターム[5F048BF06]に分類される特許

101 - 120 / 1,808


【課題】低電圧領域として使用されるSOI型MISFETと、高電圧領域として使用されるバルク型MISFETとが共存する半導体装置であっても半導体装置全体を縮小でき、更にプロセスが複雑化することなく作製できる半導体装置と製造方法を提供する。
【解決手段】単結晶半導体基板1、単結晶半導体基板から薄い埋め込み絶縁膜4で分離された薄い単結晶半導体薄膜(SOI層)3を持つSOI基板を用い、SOI型MISFET100およびバルク型MISFET200のウエル拡散層領域6と、ドレイン領域9、11、14、16と、ゲート絶縁膜5と、ゲート電極20とを同一工程にて形成する。バルク型MISFETとSOI型MISFETとを同一基板上に形成できるので、基板の占有面積を縮小できる。SOI型MISFETとバルク型MISFETとの作製工程の共通化により簡易プロセスを実現することができる。 (もっと読む)


【課題】pn接合におけるリーク電流を抑制する。
【解決手段】N型半導体層10と、シリサイド層20sがその表面に形成されたP型半導体層20とが、絶縁体9上に形成される。半導体層10にはPMOSトランジスタを、半導体層20にはNMOSトランジスタを、それぞれ形成することができる。半導体層10,20がpn接合J50aを形成する場合、これはシリサイド層20sの端部から近く、結晶欠陥が小さい位置に存在するので、ここにおけるリーク電流は非常に小さい。半導体層10,20が形成するpn接合は、シリサイド層20sの端部から2μm以下の距離にあることが望ましい。 (もっと読む)


【課題】低電圧領域として使用されるSOI型MISFETと、高電圧領域として使用されるバルク型MISFETとが共存する半導体装置であっても半導体装置全体を縮小でき、更にプロセスが複雑化することなく作製できる半導体装置と製造方法を提供する。
【解決手段】単結晶半導体基板1、単結晶半導体基板から薄い埋め込み絶縁膜4で分離された薄い単結晶半導体薄膜(SOI層)3を持つSOI基板を用い、SOI型MISFET100およびバルク型MISFET200のウエル拡散層領域6と、ドレイン領域9、11、14、16と、ゲート絶縁膜5と、ゲート電極20とを同一工程にて形成する。バルク型MISFETとSOI型MISFETとを同一基板上に形成できるので、基板の占有面積を縮小できる。SOI型MISFETとバルク型MISFETとの作製工程の共通化により簡易プロセスを実現することができる。 (もっと読む)


【課題】半導体装置の性能と信頼性を向上させる。
【解決手段】nチャネル型MISFETQn1,Qn2を覆うように半導体基板1上に引張応力膜としての窒化シリコン膜5を形成する。窒化シリコン膜5は窒化シリコン膜5a,5b,5cの積層膜である。窒化シリコン膜5a,5bの膜厚の合計は、サイドウォールスペーサSW1とサイドウォールスペーサSW2との間の間隔の半分よりも小さく、窒化シリコン膜5a,5bは、成膜後に紫外線照射処理を行って引張応力を増大させる。窒化シリコン膜5a,5b,5cの膜厚の合計は、サイドウォールスペーサSW1とサイドウォールスペーサSW2との間の間隔の半分以上であり、窒化シリコン膜5cに対しては紫外線照射処理を行わない。 (もっと読む)


【課題】ゲート電極とボディ領域とを接続したトランジスタを有する半導体装置に関し、動作速度を向上し消費電力を低減しうる半導体装置及びその製造方法を提供する。
【解決手段】第1の素子分離絶縁膜と、第1の素子分離絶縁膜により画定され、第1の素子分離絶縁膜よりも浅いウェルと、ウェル内に形成され、ウェルよりも浅く、ウェルの第1の部分とウェルの第2の部分とを画定する第2の素子分離絶縁膜と、第1の部分上に形成されたゲート絶縁膜と、ゲート絶縁膜上に形成されたゲート電極と、第2の部分においてウェルに電気的に接続され、ゲート電極とウェルとを電気的に接続する配線層とを有し、第2の素子分離絶縁膜下の領域のウェルの電気抵抗が、ウェルの他の領域の同じ深さにおける電気抵抗よりも低くなっている。 (もっと読む)


【課題】微細化を達成するとともに、ゲート電極等の信頼性を確保する半導体装置の製造方法を提供する。
【解決手段】N型MISトランジスタ及びP型MISトランジスタのそれぞれのゲート形成領域において、N型MISトランジスタのゲート形成領域の凹部内に形成されたゲート絶縁膜F0上に第1の金属含有膜F1を、P型MISトランジスタのゲート形成領域の凹部内に形成されたゲート絶縁膜F0上に第3の金属含有膜F3を形成し、第1の金属含有膜F1上及び第3の金属含有膜F3上に第2の金属含有膜F2を形成し、N型MISトランジスタのゲート絶縁膜F0に接する第1の金属含有膜F1の仕事関数がP型MISトランジスタのゲート絶縁膜F0に接する第3の金属含有膜F3の仕事関数よりも小さい。 (もっと読む)


【課題】LDMOSトランジスタとESD保護素子とを有する半導体装置において、製造工程が簡単であるとともに、所望の特性を確保しつつ従来に比べてより一層の高密度化が可能な半導体装置及びその製造方法を提供する。
【解決手段】LDMOSトランジスタ形成領域のゲート電極18aと素子分離膜11bの重なり幅をA1、ゲート電極18aとドレイン領域23bとの間隔をB1とし、ESD保護素子形成領域のゲート電極18と素子分離膜11cとの重なり幅をA2、ゲート電極18bとアノード領域22cとの間隔をB2としたときに、A1≧A2、且つB1<B2の関係を満足するように、ゲート電極18a、素子分離膜11b、ドレイン領域20a、ゲート電極18b、素子分離膜11c及び前記アノード領域22cを形成する (もっと読む)


【課題】集積回路の動作速度の向上に有利な技術を提供する。
【解決手段】n型トランジスタおよびp型トランジスタがシリコンの(551)面に形成された半導体装置において、前記n型トランジスタの拡散領域に接触するシリサイド層の厚さが前記p型トランジスタの拡散領域に接触するシリサイド層の厚さよりも薄い。 (もっと読む)


【課題】ダミーアクティブ領域の配置に伴うチップ面積の増大を引き起こすことなく、半導体基板の表面の平坦性を向上させる。
【解決手段】ダミーアクティブ領域であるn型埋込み層3の上部には、厚い膜厚を有する高耐圧MISFETのゲート絶縁膜7が形成されており、このゲート絶縁膜7の上部には、内部回路の抵抗素子IRが形成されている。n型埋込み層3と抵抗素子IRとの間に厚いゲート絶縁膜7を介在させることにより、基板1(n型埋込み層3)と抵抗素子IRとの間に形成されるカップリング容量が低減される構造になっている。 (もっと読む)


【課題】窒化金属膜から放出される窒素がゲート絶縁膜に到達することを抑制する。
【解決手段】この半導体装置は、半導体基板100、第1ゲート絶縁膜110、シリコン含有第2ゲート絶縁膜122、及び第1ゲート電極を備えている。第1ゲート絶縁膜110は半導体基板100上に形成されており、酸化シリコン又は酸窒化シリコンよりも比誘電率が高い材料から構成されている。シリコン含有第2ゲート絶縁膜122は、第1ゲート絶縁膜110上に形成されている。第1ゲート電極はシリコン含有第2ゲート絶縁膜122上に形成されており、窒化金属層124を有している。第1ゲート絶縁膜110、シリコン含有第2ゲート絶縁膜122、及び窒化金属層124は、pMOSFETの一部を構成している。 (もっと読む)


【課題】トランジスタの更なる高性能化を実現し得る半導体装置の製造方法を提供する。
【解決手段】半導体基板10上にゲート絶縁膜20を形成する工程と、ゲート絶縁膜上にゲート電極22を形成する工程と、ゲート電極の両側における半導体基板内にソース/ドレイン拡散層40,44を形成する工程と、ソース/ドレイン拡散層を形成する工程の後に、複数回のスパイクアニールを行う工程とを有している。 (もっと読む)


【課題】埋込絶縁膜によりゲート絶縁膜の実効的膜厚がドレイン端近傍において増大される構成の高電圧MOSトランジスタにおいて、耐圧特性を劣化させずにオン抵抗を低減させる。
【解決手段】第1導電型の第1のウェル11NW第2導電型の第2のウェル11PWとが形成された半導体基板11と、チャネル領域11CHと、ソースエクステンション領域11aと、第1のウェル11NW中に形成された埋込絶縁膜11Oxと、第2のウェル11PWと埋込絶縁膜11Oxの間に形成されたオフセット領域11offと、埋込絶縁膜11Oxに対してオフセット領域11offとは反対の側に形成された、第1導電型を有するドレインエクステンション領域11bと、チャネル領域11CHとオフセット領域11offおよび埋込絶縁膜11Oxを覆って、ゲート絶縁膜12Gとn+型のポリシリコンゲート電極13Gよりなるゲート電極構造と、を備える。 (もっと読む)


【課題】高誘電率の絶縁膜を有するnチャネル型トランジスタやpチャネル型トランジスタを有する半導体装置の製造方法において、nチャネル型トランジスタのゲート絶縁膜の側面への異物の付着を抑制する。
【解決手段】半導体基板の主表面上の、p型不純物領域PWLに機能用nチャネル型トランジスタが、n型不純物領域NWLに機能用pチャネル型トランジスタが形成される。p型不純物領域PWLの、平面視における機能用nチャネル型トランジスタ以外の領域に形成される複数の第1の周辺用トランジスタは、周辺用n型ゲート構造体と周辺用p型ゲート構造体とが混在するように形成される。 (もっと読む)


【課題】比較的小さい面積で形成することができ、かつ、素子サイズの微小化が進んでも保護素子として動作させることを可能にする、保護素子を提供する。
【解決手段】半導体基板1に形成された、第1導電型のウェル領域3と、この第1導電型のウェル領域3に隣接して形成された、第2導電型のウェル領域4と、第1導電型のウェル領域3に形成された、第2導電型チャネルのMOSトランジスタと、第1導電型のウェル領域3とMOSトランジスタのソース領域とMOSトランジスタのゲートとに電気的に接続された第1の配線と、MOSトランジスタのドレイン領域と第2導電型のウェル領域4とに電気的に接続された第2の配線とを含む保護素子を構成する。 (もっと読む)


【課題】 出力ポートの絶縁破壊電圧より低い絶縁破壊電圧を有することが可能な静電放電保護素子を備える半導体装置を提供する。
【解決手段】 半導体装置は、第1LDMOS素子1を含む出力ポートと、出力ポートを静電放電から保護し、第2LDMOS素子4及びバイポーラトランジスタ3から構成される静電放電保護素子2と、を備える。第1LDMOS素子1および第2LDMOS素子4は、それぞれゲート、第1導電型のドレイン領域、第2導電型のボディ領域、及び第1導電型のドレイン領域と第2導電型のボディ領域との間に形成された素子分離領域を備える。このとき、第2LDMOS素子4の絶縁破壊電圧は、第1LDMOS素子1の絶縁破壊電圧より低い。これにより、第1LDMOS素子1の静電破壊を防止することができる。 (もっと読む)


【課題】制御性よく空洞部を形成することが可能な半導体装置の製造方法を提供する。
【解決手段】ダミーゲート電極22上にオフセットスペーサ材料層を形成し、オフセットスペーサ材料層に異方性エッチングを行い、ダミーゲート電極22の側壁下部にオフセットスペーサ24を形成する。そして、サイドウォール15の形成後、ダミーゲート電極22とオフセットスペーサ24とを除去し、高誘電率材料からなるゲート絶縁膜13とメタルゲート電極14とを異方性の高い堆積方法を用いて形成する。 (もっと読む)


【課題】トランジスタのしきい値電圧を最適な値に保持可能な半導体回路を提供すること。またトランジスタのしきい値電圧を制御可能な半導体回路、及びその駆動方法を提供すること。また上記半導体回路を適用した記憶装置、表示装置、及び電子機器を提供すること。
【解決手段】被制御トランジスタのバックゲートに接続されるノードに、ダイオードと第1の容量素子を設け、トランジスタのしきい値電圧が最適になるように所望の電圧を印加可能で且つその電圧を保持することができる構成とし、さらにダイオードに並列に接続された第2の容量素子を設け、当該ノードの電圧を一時的に変化させられる構成とすればよい。 (もっと読む)


【課題】メーカーの設計負担を増加させることなくセルタイプの異なるICを実現することができるとともに、チップサイズおよび消費電力並びに動作速度が最適化された半導体集積回路を容易に実現可能な設計技術を提供する。
【解決手段】所望の機能を有する回路セルの設計情報を目的別にオブジェクトとして記述し、所定のオブジェクトの情報の削除もしくは追加のみで基体電位固定型セルと基体電位可変型セルのいずれをも構成可能なセル情報として、セルライブラリに登録するようにした。 (もっと読む)


【課題】電子及び正孔の移動度を向上させたSOI構造のCMOSの提供
【解決手段】Si基板1上にシリコン窒化膜2及びシリコン酸化膜3を介して貼り合わせられ、島状に絶縁分離されたGe層8(第2の半導体層)が設けられ、このGe層8に高濃度のソースドレイン領域(14、15)が形成されたPチャネルのMISFETと、Si基板1上にシリコン窒化膜2及び一部に空孔5を有するシリコン酸化膜3を介して、空孔5直上の歪みSi層7を挟み、左右にSiGe層6を有する構造からなるエピタキシャル半導体層(第1の半導体層)が島状に絶縁分離されて設けられ、歪みSi層7には概略チャネル領域が形成され、SiGe層6には概略高濃度及び低濃度のソースドレイン領域(10、11、12,13)が形成されたNチャネルのMISFETとから構成したCMOS。 (もっと読む)


【課題】基板の大型化に対応し得る金属配線を作製する。
【解決手段】絶縁表面上に少なくとも一層の導電膜12,13を形成し、前記導電膜12,13上にレジストパターンを形成し、前記レジストパターンを有する導電膜にエッチングを行い、バイアス電力密度、ICP電力密度、下部電極の温度、圧力、エッチングガスの総流量、エッチングガスにおける酸素または塩素の割合に応じてテーパー角αが制御された金属配線を形成する。このようにして形成された金属配線は、幅や長さのばらつきが低減されており、基板10の大型化にも十分対応し得る。 (もっと読む)


101 - 120 / 1,808