説明

Fターム[5F058BF23]の内容

絶縁膜の形成 (41,121) | 無機絶縁膜の形成法 (10,542) | 気相堆積 (7,977) | 堆積物形成反応ガス (3,745) | 主構成元素の化合物 (2,014) | シラン(SinH2n+2) (460)

Fターム[5F058BF23]に分類される特許

1 - 20 / 460



【課題】酸化物半導体を用いた半導体装置において、オン電流の低下を抑制する。
【解決手段】半導体装置を、シリコンを含む絶縁膜と、絶縁膜上の酸化物半導体膜と、酸化物半導体膜上のシリコンを含むゲート絶縁膜と、ゲート絶縁膜上の少なくとも酸化物半導体膜と重畳するゲート電極と、酸化物半導体膜と電気的に接続するソース電極およびドレイン電極を有する構造とし、少なくともゲート電極と重畳する酸化物半導体膜は、絶縁膜との界面から酸化物半導体膜に向けてシリコンの濃度が1.1原子%より低い領域を有し、当該領域以外の酸化物半導体膜のシリコン濃度は、当該領域より小さくなる構造とする。 (もっと読む)


【課題】電界効果トランジスタを有する半導体装置のトランジスタ性能を向上させることのできる技術を提供する。
【解決手段】ゲート絶縁膜5およびゲート電極6n,6pの側面にサイドウォール9を形成した後、サイドウォール9の両側の半導体基板1に不純物をイオン注入して不純物領域を形成する。続いて、半導体基板1の主面上に第1絶縁膜14、第2絶縁膜15、および第3絶縁膜16を順次形成した後、イオン注入された上記不純物を活性化する熱処理を行う。ここで、第1絶縁膜14は、第2絶縁膜15よりも被覆性のよい膜であり、かつ、第2絶縁膜15とエッチング選択比が異なる膜である。第2絶縁膜15は、第1絶縁膜14よりも水素の拡散を阻止する機能が高い膜である。第3絶縁膜16は、第1絶縁膜14および第2絶縁膜15よりも内部応力の変化が大きい膜である。 (もっと読む)


【課題】耐圧を向上できる電界効果トランジスタを提供する。
【解決手段】GaN系HFETは、ゲート絶縁膜17をなす半絶縁膜の抵抗率ρが、電流密度が6.25×10−4(A/cm)であるとき、3.9×10Ωcmであった。抵抗率ρ=3.9×10Ωcmの半絶縁膜によるゲート絶縁膜15を備えたことで、1000Vの耐圧が得られた。ゲート絶縁膜の抵抗率が、1×1011Ωcmを超えると耐圧が急減し、ゲート絶縁膜の抵抗率が、1×10Ωcmを下回るとゲートリーク電流が増大する。 (もっと読む)


【課題】酸化物半導体を用いたトランジスタでは、酸化物半導体膜への水素原子の混入が信頼性に悪影響を与える。製造後の半導体装置に混入しうる、水素原子を有する物質として代表的なものは、水である。そこで酸化物半導体を用いた半導体装置に混入する、水素原子を有する物質、特に水を低減することとする。
【解決手段】高密度な酸化窒化シリコン膜は水を含む雰囲気下であっても水の侵入を防ぐ効果が高く、膨潤が少ないことが明らかとなった。そこで高密度な酸化窒化シリコン膜を保護膜として設け、酸化物半導体を用いた半導体装置への水の侵入を防ぐ。具体的には、密度が2.32g/cm以上、またはプレッシャークッカー試験前後において膨潤率が4体積%以下、またはフーリエ変換型赤外分光法によるスペクトルのピーク(極大吸収波数)が1056cm−1以上に現れる、酸化窒化シリコン膜を保護膜として用いる。 (もっと読む)


【課題】低温領域において、フッ化水素に対する耐性の高い窒化膜を形成する。
【解決手段】基板に対して原料ガスを供給する工程と、基板に対してプラズマ励起させた水素含有ガスを供給する工程と、基板に対してプラズマ励起または熱励起させた窒化ガスを供給する工程と、基板に対してプラズマ励起させた窒素ガスおよびプラズマ励起させた希ガスのうち少なくともいずれかを供給する工程と、を含むサイクルを所定回数行うことで、基板上に窒化膜を形成する工程を有する。 (もっと読む)


【課題】処理容器内の処理空間に接する石英製の部材の表面に対するカーボン膜の密着性を向上させてパーティクルの発生を抑制することができる成膜装置の運用方法を提供する。
【解決手段】石英製の処理容器8内で保持手段22に保持された複数の被処理体Wの表面にカーボン膜を成膜する成膜工程を行うようにした成膜装置の運用方法において、処理容器内の処理空間に接する石英製の部材の表面にカーボン膜の密着性を向上させる密着膜70を形成する密着膜形成工程を行うようにする。これにより、処理容器内の処理空間に接する石英製の部材の表面に対するカーボン膜の密着性を向上させてパーティクルの発生を抑制する。 (もっと読む)


【課題】プラズマを安定して維持することができるプラズマ処理方法を提供する。
【解決手段】金属膜が形成された基板を収容する真空容器と、電磁波の入射窓を有する誘導結合型のプラズマ発生機構とを備えたプラズマ処理装置により、基板に絶縁膜を成膜するプラズマ処理方法において、Arプラズマ中のイオンにより基板の表面をArスパッタ処理し(S3)、Arスパッタした基板に絶縁膜を成膜し(S4)、基板を真空容器から搬出し(S5)、Arスパッタにより入射窓の内壁に付着した原子を、酸素プラズマ処理により酸化する(S6)。 (もっと読む)


【課題】消費エネルギーを抑制しつつ成膜性能を向上する半導体装置の製造方法を提供する。
【解決手段】半導体装置の製造方法は、ウエハ2を処理室20へ搬入する搬入工程(S1)と、処理室20を排気する排気工程と、処理室20を所定の圧力まで降下する降圧工程(S2)と、複数の処理ガスを供給してウエハ2に膜を形成する成膜工程(S4)と、処理室20を所定の圧力まで上昇する昇圧工程(S7)と、ウエハ2を処理室20から搬出する搬出工程(S8)と、成膜工程(S4)における排気量が、降圧工程(S2)及び昇圧工程(S7)における排気量よりも大きくなるように調整する調整工程と、を有する。 (もっと読む)


【課題】動作電圧の高電圧化を図るも、電極端における電界集中を緩和してデバイス特性の劣化を確実に抑止し、高耐圧及び高出力を実現する信頼性の高い化合物半導体装置を提供する。
【解決手段】HEMTは、SiC基板1上に、化合物半導体層2と、開口6bを有し、化合物半導体層2上を覆う、窒化珪素(SiN)の保護膜6と、開口6bを埋め込むように化合物半導体層2上に形成されたゲート電極7とを有しており、保護膜6は、その下層部分6aが開口6bの側面から張り出した張出部6cが形成されている。 (もっと読む)


【課題】酸化物半導体を用いた低温プロセスで形成する信頼性の高い薄膜トランジスタ、その製造方法、および表示装置を提供する。
【解決手段】薄膜トランジスタ1は、基板100と、前記基板上の一部に設けられたゲート電極110と、前記ゲート電極を覆う第1の絶縁膜120と、前記第1の絶縁膜を介して前記ゲート電極上に設けられた酸化物半導体膜130と、前記酸化物半導体膜上の一部に設けられた第2の絶縁膜150と、前記酸化物半導体膜から露出する酸化物半導体膜の一部と接続されたソース電極140Sおよびドレイン電極140Dと、を備え、前記酸化物半導体膜はInと、Gaと、Znのうち少なくとも一つの元素を含む酸化物半導体を有し、前記第1の絶縁膜中に含有される水素濃度が5×1020atm/cm−3以上であり、かつ、前記第2の絶縁膜中に含有される水素濃度が1019atm/cm−3以下である。 (もっと読む)


【課題】ウエハ面内の膜厚均一性を高める。
【解決手段】複数枚の基板を積層して収容した処理室12の内周面に区画され、一対の電極を内部に収容する放電室に処理ガスを供給する工程と、前記電極に電力を印加してプラズマを形成し前記処理ガスを活性化させる工程と、を行い、活性化された前記処理ガスを用いて前記基板を処理する。 (もっと読む)


【課題】半導体構造の形成方法、より具体的にはトレンチ内における誘電層の形成方法を提供する。
【解決手段】半導体構造を形成する方法は、基板上にシリコン酸化被膜を形成するために、シリコン前駆体と原子酸素前駆体を約150℃以下の処理温度において反応させることを含む。シリコン酸化被膜は酸素含有環境内で紫外線(UV)硬化される。 (もっと読む)


【課題】電気特性の制御された酸化物半導体層を用いて作製された抵抗素子及び薄膜トランジスタを利用した論理回路、並びに該論理回路を利用した半導体装置を提供する。
【解決手段】抵抗素子354に適用される酸化物半導体層905上にシラン(SiH)及びアンモニア(NH)などの水素化合物を含むガスを用いたプラズマCVD法によって形成された窒化シリコン層910が直接接するように設けられ、且つ薄膜トランジスタ355に適用される酸化物半導体層906には、バリア層として機能する酸化シリコン層909を介して、窒化シリコン層910が設けられる。そのため、酸化物半導体層905には、酸化物半導体層906よりも高濃度に水素が導入される。結果として、抵抗素子354に適用される酸化物半導体層905の抵抗値が、薄膜トランジスタ355に適用される酸化物半導体層906の抵抗値よりも低くなる。 (もっと読む)


【課題】酸化物半導体を用いた半導体装置において、より優れたゲート絶縁膜を有する半導体装置を提供する。また、現在実用化されている量産技術からの膜構成、プロセス条件、または生産装置等の変更が少なく、半導体装置に安定した電気特性を付与し、信頼性の高い半導体装置を提供する。また、当該半導体装置の作製方法を提供する。
【解決手段】ゲート電極と、ゲート電極上に形成されたゲート絶縁膜と、ゲート絶縁膜上に形成された酸化物半導体膜と、を有し、ゲート絶縁膜は、窒化酸化シリコン膜と、窒化酸化シリコン膜上に形成された酸化窒化シリコン膜と、酸化窒化シリコン膜上に形成された金属酸化膜と、を含み、金属酸化膜上に酸化物半導体膜が接して形成される。 (もっと読む)


【課題】膜応力の小さい低誘電率の絶縁膜を形成できる基板処理装置を提供する。
【解決手段】処理室内へ無機シリコンガスと酸素含有ガスを供給している状態で、励起エネルギーを処理室内へ供給して、基板表面にシリコン酸化膜を形成するシリコン酸化膜形成工程と、処理室内へ有機シリコンガスを供給している状態で、励起エネルギーを処理室内へ供給して、基板表面にシリコン膜を形成するシリコン膜形成工程と、を行うことにより、処理室内の基板表面に絶縁膜を形成するよう、基板処理装置を構成する。 (もっと読む)


【課題】窒化膜の屈折率及び/又は堆積速度の分布の均一性を所定の数値範囲内に収めるとともに、窒化膜の応力の制御性を高める。
【解決手段】本発明の1つの窒化膜の製造装置100は、チャンバー30内に配置された基板20上にプラズマCVD法によって窒化膜70(70a)を形成する窒化膜の製造装置100である。具体的には、この窒化膜の製造装置100は、窒化膜70(70a)の形成のために独立に印加する相対的に高い周波数の第1高周波電力及び/又は相対的に低い周波数の第2高周波電力とを用いて得られる、所定の数値範囲内に収まった前述の窒化膜の屈折率の分布及び/又は前述の窒化膜の堆積速度の分布に基づいて、所望(応力が0の場合を含む)の窒化膜70(70a)の圧縮応力又は引張応力を得るための第1高周波電力が印加される第1期間と第2高周波電力が印加される第2期間とを算出する制御部39を備えている。 (もっと読む)


【課題】半導体装置の性能を向上させる。
【解決手段】半導体基板1のnMIS形成領域1Aにnチャネル型MISFETQnを、半導体基板1のpMIS形成領域1Bにpチャネル型MISFETQpを、それぞれ形成してから、nチャネル型MISFETQnおよびpチャネル型MISFETQpを覆うように引張応力の窒化シリコン膜5を形成し、nMIS形成領域1AおよびpMIS形成領域1Bの窒化シリコン膜5に紫外線照射処理を施す。その後、nMIS形成領域1Aの窒化シリコン膜5を覆いかつpMIS形成領域1Bの窒化シリコン膜5を露出するマスク層6aを形成してから、pMIS形成領域1Bの窒化シリコン膜5をプラズマ処理することで、pMIS形成領域1Bの窒化シリコン膜5の引張応力を緩和させる。 (もっと読む)


【課題】シリコン系ガスとアミン系ガスとを使用してSiC等のSiC系の膜を低温で成膜できる半導体装置の製造方法、基板処理方法、基板処理装置およびプログラムを提供する。
【解決手段】基板200を処理室201内に収容する工程と、加熱された処理室201内へシリコン系ガスとアミン系ガスとを供給して基板200上にシリコンおよび炭素を含む膜を形成する工程と、を有し、シリコンおよび炭素を含む膜を形成する工程は、処理室201内へシリコン系ガスとアミン系ガスとを供給して、シリコン系ガスとアミン系ガスとを処理室201内に封じ込める工程と、シリコン系ガスとアミン系ガスとを処理室201内に封じ込めた状態を維持する工程と、処理室201内を排気する工程と、を有する。 (もっと読む)


【課題】微結晶シリコン膜を活性層とするTFTの閾値ドリフトを小さくする。
【解決手段】シリコンを含む半導体装置の製造方法であって、シリコンを含む原料ガスを水素ガスで600倍以上に希釈する工程と、前記希釈した原料ガスと水素ガスの混合ガスに高周波電力を加えて放電させる工程と、前記放電により分解した原料ガス中のシリコンを基板に堆積させる工程と、前記混合ガスの圧力を600Pa以上に制御する工程とを含み、前記原料ガスの水素ガスによる希釈率がD、前記混合ガスの圧力がP(Pa)のとき、前記高周波電力の電力密度Pw(W/cm)をPw(W/cm)×D(倍)/P(Pa)の値が0.083以上、かつ0.222以下となる範囲に設定することを特徴とする半導体装置の製造方法。 (もっと読む)


1 - 20 / 460