説明

Fターム[5F083EP21]の内容

半導体メモリ (164,393) | EPROM、EEPROMの構造 (21,423) | 制御機構 (7,428)

Fターム[5F083EP21]の下位に属するFターム

Fターム[5F083EP21]に分類される特許

1 - 20 / 41


【課題】トランジスタのオン特性を向上させて、半導体装置の高速応答、高速駆動を実現する構成を提供する。信頼性の高い半導体装置を提供する。
【解決手段】半導体層、ソース電極層又はドレイン電極層、ゲート絶縁膜、及びゲート電極層が順に積層されたトランジスタにおいて、該半導体層としてインジウム、第3族元素、亜鉛、及び酸素を少なくとも含む非単結晶の酸化物半導体層を用いる。第3族元素は安定剤として機能する。 (もっと読む)


【課題】酸化物半導体を用いたトランジスタは、非晶質シリコンを用いたトランジスタと比較して信頼性が劣る場合があった。そこで、信頼性が高い酸化物半導体を用いたトランジスタを有する半導体装置を提供する。
【解決手段】酸化物半導体膜に含まれる水素、窒素および炭素などの不純物は酸化物半導体膜の半導体特性を低下させる要因となる。例えば、酸化物半導体膜に含まれる水素および窒素は、酸化物半導体膜を用いたトランジスタのしきい値電圧をマイナス方向へシフトさせてしまう要因となる。また、酸化物半導体膜に含まれる窒素、炭素および希ガスは、酸化物半導体膜中に結晶領域が生成されることを阻害する。そこで、酸化物半導体膜の不純物濃度を低減することで、高い信頼性を有するトランジスタを作製する。 (もっと読む)


【課題】良好な特性を維持しつつ、微細化を達成した、酸化物半導体を用いた半導体装置
を提供することを目的の一とする。
【解決手段】酸化物半導体層と、酸化物半導体層と電気的に接続するソース電極およびド
レイン電極と、酸化物半導体層、ソース電極およびドレイン電極を覆うゲート絶縁層と、
ゲート絶縁層上のゲート電極と、を有し、酸化物半導体層の厚さは1nm以上10nm以
下であり、ゲート絶縁層は、ゲート絶縁層に用いられる材料の比誘電率をε、ゲート絶
縁層の厚さをdとして、ε/dが、0.08(nm−1)以上7.9(nm−1)以下
の関係を満たし、ソース電極とドレイン電極との間隔は10nm以上1μm以下である半
導体装置である。 (もっと読む)


【課題】酸化物半導体を含み、高速動作が可能なトランジスタ及びその作製方法を提供する。または、該トランジスタを含む信頼性の高い半導体装置及びその作製方法を提供する。
【解決手段】チャネル形成領域と、該チャネル形成領域を挟むように設けられ、チャネル形成領域よりも低抵抗な領域であるソース領域及びドレイン領域と、を含み、チャネル形成領域、ソース領域及びドレイン領域はそれぞれ結晶性領域を含む酸化物半導体層を有する半導体装置を提供する。 (もっと読む)


【課題】酸化物半導体層を含むトランジスタを有する不揮発性メモリにおいて、保持された情報を容易に消去できる不揮発性メモリを提供する。
【解決手段】第1のトランジスタ及び第2のトランジスタを有するメモリセルを有し、第1のトランジスタは第1のチャネル、第1のゲート電極、第1のソース電極及び第1のドレイン電極を有し、第2のトランジスタは酸化物半導体からなる第2のチャネル、第2のゲート電極、第2のソース電極及び第2のドレイン電極を有し、第2のソース電極及び第2のドレイン電極の一方は第1のゲート電極と電気的に接続され、メモリセルへの情報の書き込み及び消去は、第2のソース電極及び第2のドレイン電極の一方と、第1のゲート電極との間のノードの電位を高くすることにより情報が書き込まれ、第2のチャネルに紫外線を照射して、ノードの電位を低くすることにより情報が消去される不揮発性メモリによって解決する。 (もっと読む)


【課題】従来のDRAMは、データを保持するために数十ミリ秒間隔でリフレッシュをしなければならず、消費電力の増大を招いていた。また、頻繁にトランジスタのオン状態とオフ状態が切り換わるのでトランジスタの劣化が問題となっていた。この問題は、メモリ容量が増大し、トランジスタの微細化が進むにつれて顕著なものとなっていた。
【解決手段】ワイドギャップ半導体を有するトランジスタを用い、ゲート電極用のトレンチと、素子分離用のトレンチを有するトレンチ構造のトランジスタとする。ソース電極とドレイン電極との距離を狭くしてもゲート電極用のトレンチの深さを適宜設定することで、短チャネル効果の発現を抑制することができる。 (もっと読む)


【課題】DRAMよりも書き込み、読み出しなどの動作速度が高く、SRAMよりもメモリセルあたりの半導体素子の数を減らすことができる記憶装置。
【解決手段】制御装置と、演算装置と、緩衝記憶装置とを有し、緩衝記憶装置は、主記憶装置から、或いは演算装置から送られてきたデータを、制御装置からの命令に従って記憶し、緩衝記憶装置は複数のメモリセルを有し、メモリセルは、チャネル形成領域に酸化物半導体を含むトランジスタと、トランジスタを介してデータの値に従った量の電荷が供給される記憶素子とを有する。さらに、緩衝記憶装置が有する複数のメモリセルは、バリッドビットに対応するメモリセルが、データフィールドに対応するメモリセルよりも、そのデータの保持時間が短い。 (もっと読む)


【課題】半導体装置の駆動方法を提供する。
【解決手段】ビット線と、選択線と、選択トランジスタと、m(mは2以上の自然数)本の書き込みワード線と、m本の読み出しワード線と、ソース線と、第1乃至mのメモリセルと、を有する半導体装置において、メモリセルは、第1のトランジスタ、容量素子に蓄積された電荷を保持する第2のトランジスタを含み、第2のトランジスタは酸化物半導体層で形成されるチャネルを有する。上記構成の半導体装置の駆動方法において、メモリセルに書き込みを行う場合、第1のトランジスタを導通させて第1のソース端子または第1のドレイン端子を固定電位とし、容量素子に安定した電位の書き込みを行う。 (もっと読む)


【課題】微細化による電気特性の変動が生じにくい半導体装置を提供する。
【解決手段】第1の領域と、第1の領域の側面に接した一対の第2の領域と、一対の第2
の領域の側面に接した一対の第3の領域と、を含む酸化物半導体膜と、酸化物半導体膜上
に設けられたゲート絶縁膜と、ゲート絶縁膜上に第1の領域と重畳した第1の電極と、を
有し、第1の領域は、CAAC酸化物半導体領域であり、一対の第2の領域及び一対の第
3の領域は、ドーパントを含む非晶質な酸化物半導体領域であり、一対の第3の領域のド
ーパント濃度は、一対の第2の領域のドーパント濃度より高い半導体装置である。 (もっと読む)


【課題】酸化物半導体を用いた半導体装置に安定した電気的特性を付与し、信頼性の高い半導体装置を提供する。
【解決手段】酸化物半導体膜を含むトランジスタの作製工程において、酸化物半導体膜に酸素ドープ処理を行い、その後、酸化物半導体膜及び酸化物半導体膜上に設けられた酸化アルミニウム膜に対して熱処理を行うことで、化学量論的組成比を超える酸素を含む領域を有する酸化物半導体膜を形成する。該酸化物半導体膜を用いたトランジスタは、バイアス−熱ストレス試験(BT試験)前後においてもトランジスタのしきい値電圧の変化量が低減されており、信頼性の高いトランジスタとすることができる。 (もっと読む)


【課題】酸化物半導体を用いるトランジスタにおいて、電気的特性の良好なトランジスタ及びその作製方法を提供することを課題の一とする。
【解決手段】基板上に酸化物半導体膜及び絶縁膜を有し、酸化物半導体膜の端部は絶縁膜と接しており、酸化物半導体膜は、チャネル形成領域と、チャネル形成領域を挟んで形成されたドーパントを含む領域とを含み、酸化物半導体膜上に接して形成されたゲート絶縁膜と、ゲート絶縁膜上に形成され、サイドウォール絶縁膜を有するゲート電極と、サイドウォール絶縁膜、酸化物半導体膜、および絶縁膜に接して形成されたソース電極およびドレイン電極とを有する半導体装置である。 (もっと読む)


【課題】オフ電流の極めて小さい酸化物半導体膜を用いたトランジスタを提供する。また、該トランジスタを適用することで、消費電力の極めて小さい半導体装置を提供する。
【解決手段】基板上に加熱処理により酸素を放出する下地絶縁膜を形成し、下地絶縁膜上に第1の酸化物半導体膜を形成し、基板を加熱処理する。次に、第1の酸化物半導体膜上に導電膜を形成し、該導電膜を加工してソース電極およびドレイン電極を形成する。次に、第1の酸化物半導体膜を加工して第2の酸化物半導体膜を形成した直後にソース電極、ドレイン電極および第2の酸化物半導体膜を覆うゲート絶縁膜を形成し、ゲート絶縁膜上にゲート電極を形成する。 (もっと読む)


【課題】半導体装置を小型化することを課題の一とする。また、記憶素子を有する半導体装置の駆動回路の面積を縮小することを課題の一とする。
【解決手段】入力端子と出力端子の位置が固定された複数のセルを第1の方向に配置し、各セルの入力端子および出力端子とそれぞれ電気的に接続される配線を複数のセル上に積層させ、且つ、その配線の延在方向をセルが並べられた第1の方向と同方向とすることで、駆動回路の小型化を図った半導体装置を提供する。 (もっと読む)


【課題】電力が供給されない状況でも記憶内容の保持が可能で、かつ、書き込み回数にも制限が無い、新たな半導体装置を提供する。また、回路規模を縮小し、書き込み、読み出しに対する信頼性を向上させる。
【解決手段】酸化物半導体層を含むトランジスタを用いたメモリセルに対して、ベリファイ動作と、読み出しを行う際に、異なるしきい値電圧を示すデュアルゲート駆動のトランジスタを抵抗素子として用いることで、一系統の基準電位回路のみで安定したベリファイ動作、及び読み出し動作が可能となる。 (もっと読む)


【課題】信頼性の高い書き込み動作を高速に行うことのできる半導体装置の駆動方法を提供する。
【解決手段】多値書き込みを行う半導体装置の駆動方法において、酸化物半導体層を含むトランジスタを用いたメモリセルに、書き込みを行う書き込みトランジスタのオンオフを制御する信号線を、ビット線に沿うように配置し、読み出し動作時に容量素子に与える電圧を書き込み時にも利用して、多値書き込みを行う。書き込みを行いながらビット線の電位を検知することによって、書き込みベリファイ動作を行うことなく、書き込みデータに対応した電位がフローティングゲートに正常に与えられたかを確認することができる。 (もっと読む)


【課題】導体半導体接合を用いた電界効果トランジスタのゼロ電流を低減せしめる構造を提供する。
【解決手段】半導体層101とゲート105の間に、絶縁物104により周囲を覆われた導体もしくは半導体よりなり、半導体層101を横切るように形成されたフローティング電極102を形成し、これを帯電させることにより、ソース電極103aやドレイン電極103bからのキャリアの流入を防止する。このため半導体層101中のキャリア濃度を十分に低く維持でき、よって、ゼロ電流を低減できる。 (もっと読む)


【課題】長い期間においてデータの保持が可能な記憶装置を提供する。
【解決手段】記憶素子と、上記記憶素子における電荷の供給、保持、放出を制御するためのスイッチング素子として機能するトランジスタとを有する。上記トランジスタは、通常のゲート電極の他に、閾値電圧を制御するための第2のゲート電極が備えられており、また、活性層に酸化物半導体を含むためにオフ電流が極めて低い。上記記憶装置では、絶縁膜に囲まれたフローティングゲートに高電圧で電荷を注入するのではなく、オフ電流の極めて低いトランジスタを介して記憶素子の電荷量を制御することで、データの記憶を行う。 (もっと読む)


【課題】メモリセルの保持データが多値化された場合であっても正確なデータを保持することが可能なメモリセルを有する半導体装置を供給すること。
【解決手段】半導体装置に、酸化物半導体によってチャネル領域が形成されるトランジスタのソース及びドレインの一方が電気的に接続されたノードにおいてデータの保持を行うメモリセルを設ける。なお、当該トランジスタのオフ電流(リーク電流)の値は、極めて低い。そのため、当該ノードの電位を所望の値に設定後、当該トランジスタをオフ状態とすることで当該電位を一定又はほぼ一定に維持することが可能である。これにより、当該メモリセルにおいて、正確なデータの保持が可能となる。 (もっと読む)


【課題】データの書込みにおいて、電源電位を増やすことなく電圧を低減することで低消費電力化が実現された半導体装置を提供する。さらにデータの書込みにおいて、電源電位を増やすことなく選択トランジスタにおけるしきい値落ちの問題が抑制された半導体装置を提供する。
【解決手段】nチャネル型の選択トランジスタのゲートに電気的に接続するワード線に直列にダイオード電気的に接続されたトランジスタを電気的に接続し、さらに当該選択トランジスタのソース又はドレインの一方に電気的に接続するビット線と、ワード線との間に容量素子を設ける、またはビット線とワード線との線間容量を利用する。さらに書込みにおいて、ワード選択のタイミングをビット選択のタイミングよりも早くする。 (もっと読む)


【課題】電力が供給されない状況でも記憶内容の保持が可能で、かつ、書き込み回数にも制限が無い、新たな構造の半導体装置を提供することを目的の一とする。
【解決手段】メモリセルアレイを構成する複数のメモリセルが、複数行ごとに複数のブロックに分割され、共通ビット線は、各ブロックにおいて、選択トランジスタを介して分割ビット線と電気的に接続されており、メモリセルの一は、第1のチャネル形成領域を含む第1のトランジスタと、第2のチャネル形成領域を含む第2のトランジスタと、容量素子と、を有し、ソース線は、第1のソース電極と接続され、分割ビット線は、第1のドレイン電極および第2のソース電極と接続され、ワード線は、容量素子の電極の一方と接続され、信号線は、第2のゲート電極と接続され、第1のゲート電極と、第2のドレイン電極と、容量素子の電極の他方とが接続される半導体装置を提供する。 (もっと読む)


1 - 20 / 41