説明

Fターム[5F083GA06]の内容

半導体メモリ (164,393) | 改善・改良の目的 (17,234) | 低消費電力 (2,525) | リーク電流の低下 (1,514)

Fターム[5F083GA06]の下位に属するFターム

Fターム[5F083GA06]に分類される特許

1 - 20 / 1,512






【課題】微細な構造であり、高い電気特性を有する半導体装置を歩留まりよく提供する。
【解決手段】酸化物半導体膜と、酸化物半導体膜上のゲート絶縁膜と、ゲート絶縁膜上のゲート電極と、ゲート電極上の導電膜と、酸化物半導体膜及びゲート絶縁膜の側面に接するソース電極及びドレイン電極と、を有し、ソース電極及びドレイン電極の上面の高さは、ゲート電極の上面の高さより低く、導電膜、ソース電極及びドレイン電極は、同一の金属元素を有する半導体装置である。また、ゲート電極の側面を覆う側壁絶縁膜を形成してもよい。 (もっと読む)


【課題】増加された集積度を有し且つ高密度で高速の3次元(抵抗性)半導体(メモリ)装置を、最小限のマスク工程数で提供する。
【解決手段】チャンネル領域によって分離された第1及び第2不純物領域を含む基板、前記第1不純物領域に接続するビットライン、前記第2不純物領域に接続する垂直電極、前記基板と前記ビットラインとの間に配置される水平電極の積層体、及び、前記積層体と前記基板との間に配置される選択ラインを含む。この時,前記選択ラインは平面形状及び平面位置において、前記水平電極の各々と実質的に同一であり得る。 (もっと読む)


【課題】従来よりも大幅に少ない原材料及び製造エネルギーを用いて、かつ、従来よりも短工程で製造することが可能な機能性デバイスの製造方法を提供する。
【解決手段】熱処理することにより機能性固体材料となる機能性液体材料を準備する第1工程と、基材上に機能性液体材料を塗布することにより、機能性固体材料の前駆体組成物層を形成する第2工程と、前駆体組成物層を80℃〜200℃の範囲内にある第1温度に加熱することにより、前駆体組成物層の流動性を予め低くしておく第3工程と、前駆体組成物層を80℃〜300℃の範囲内にある第2温度に加熱した状態で前駆体組成物層に対して型押し加工を施すことにより、前駆体組成物層に型押し構造を形成する第4工程と、前駆体組成物層を第2温度よりも高い第3温度で熱処理することにより、前駆体組成物層から機能性固体材料層を形成する第5工程とをこの順序で含む機能性デバイスの製造方法。 (もっと読む)


【課題】製造の容易な不揮発性半導体記憶装置およびその製造方法を提供する。
【解決手段】不揮発性半導体記憶装置は、第1のメモリセルアレイ層と、第1のメモリセルアレイ層の上に形成された第1の絶縁層と、第2のメモリセルを具備する第2のNANDセルユニットを有する第2のメモリセルアレイ層と、第1の絶縁層を介して上下に位置する第1及び第2の浮遊ゲートの第1の方向の両側面にゲート間絶縁層を介して形成され、第1の方向と直交する第2の方向に延びる制御ゲートと、第1のNANDセルユニットの両端に位置し、第1の浮遊ゲートと同層に形成され、第1の半導体層と接続される下部コンタクトと、第2のNANDセルユニットの両端に位置し、第2の半導体層と下部コンタクトとを接続する上部コンタクトとを備える。 (もっと読む)


【課題】メモリセルの電荷蓄積層内での電荷の横方向の移動を抑制する。
【解決手段】実施形態に係わる不揮発性半導体記憶装置は、第1乃至第nの半導体層(nは2以上の自然数)12−1〜12−3と、第1乃至第nの半導体層12−1〜12−3をチャネルとする第1乃至第nのメモリストリングS1〜S3とを備える。第iのメモリストリング(iは1〜nのうちの1つ)Siは、第iの半導体層12−iの第3の方向にある表面上に、複数のメモリセルMCに対応する、複数の電荷蓄積層16及び複数のコントロールゲート18を備える。また、第iのメモリストリング内において、少なくとも第2の方向に隣接する2つのメモリセルMCの電荷蓄積層16が互いに結合される。そして、複数のコントロールゲート18間に、複数の電荷蓄積層16のバンドオフセットを上昇させる金属元素19が添加される。 (もっと読む)


【課題】ゲート絶縁膜の膜減り及びダメージを抑え、微細なトランジスタを歩留まり良く作製する。
【解決手段】絶縁表面上の半導体膜と、半導体膜上のゲート絶縁膜と、ゲート絶縁膜上の、第1の金属膜および第1の金属膜上の第2の金属膜を有するゲート電極と、ゲート絶縁膜上に形成され、かつ第1の金属膜の側面と接し、第1の金属膜と同一の金属元素を有する金属酸化物膜と、を有し、第2の金属膜より第1の金属膜のほうが、イオン化傾向が大きい半導体装置である。 (もっと読む)


【課題】酸化物半導体を用いた半導体装置に安定した電気的特性を付与し、高信頼性化す
ることを目的の一とする。
【解決手段】第1の絶縁膜を形成し、第1の絶縁膜上に、ソース電極およびドレイン電極
、ならびに、ソース電極およびドレイン電極と電気的に接続する酸化物半導体膜を形成し
、酸化物半導体膜に熱処理を行って、酸化物半導体膜中の水素原子を除去し、水素原子が
除去された酸化物半導体膜に酸素ドープ処理を行って、酸化物半導体膜中に酸素原子を供
給し、酸素原子が供給された酸化物半導体膜上に、第2の絶縁膜を形成し、第2の絶縁膜
上の酸化物半導体膜と重畳する領域にゲート電極を形成する半導体装置の作製方法である
(もっと読む)


【課題】酸化物半導体膜の被形成面近傍に含まれる不純物を低減する。また、酸化物半導体膜の被形成面近傍の結晶性を向上させる。また、該酸化物半導体膜を用いることにより、安定した電気特性を有する半導体装置を提供する。
【解決手段】シリコンを含む下地絶縁膜と、下地絶縁膜上に形成された酸化物半導体膜と、酸化物半導体膜上に形成されたゲート絶縁膜と、ゲート絶縁膜と接し、少なくとも酸化物半導体膜と重畳する領域に設けられたゲート電極と、酸化物半導体膜に電気的に接続されたソース電極、及びドレイン電極と、を有し、酸化物半導体膜は、下地絶縁膜との界面から酸化物半導体膜に向けてシリコン濃度が1.0原子%以下の濃度で分布する領域を有し、少なくとも領域内に、結晶部を含む半導体装置である。 (もっと読む)


【課題】制御性の高い不揮発性半導体記憶装置およびその製造方法を提供する。
【解決手段】不揮発性半導体記憶装置は、第1のメモリセルアレイ層と、第1のメモリセルアレイ層の上に形成された第1の絶縁層と、第1の絶縁層の上に形成された第2のメモリセルアレイ層と、第1の絶縁層を介して上下に位置する第1及び第2の浮遊ゲートの第1の方向の両側面にゲート間絶縁層を介して形成され、第1の方向と直交する第2の方向に延びる制御ゲートと、第1の絶縁層を介して上下に位置する第1及び第2の選択ゲートの第1の方向の両側面にゲート間絶縁層を介して形成され、第2の方向に延び、第1及び第2の半導体層並びに第1及び第2のゲート絶縁層と共に補助トランジスタを形成する補助ゲートとを備える。 (もっと読む)


【課題】強誘電体ゲート薄膜トランジスターの伝達特性が劣化し易い(例えばメモリウインドウの幅が狭くなり易い)という問題をはじめとして、PZT層から酸化物導電体層にPb原子が拡散することに起因して生ずることがある種々の問題が解決された強誘電体ゲート薄膜トランジスターを提供する。
【解決手段】強誘電体ゲート薄膜トランジスター20は、チャネル層28と、チャネル層28の導通状態を制御するゲート電極層22と、チャネル層28とゲート電極層22との間に配置された強誘電体層からなるゲート絶縁層25とを備え、ゲート絶縁層(強誘電体層)25は、PZT層23と、BLT層24(Pb拡散防止層)とが積層された構造を有し、チャネル層28(酸化物導電体層)は、ゲート絶縁層(強誘電体層)25におけるBLT層(Pb拡散防止層)24側の面に配置されている。 (もっと読む)


【目的】配線間のコンタクト配置において配線間距離をより小さく形成する。
【構成】実施形態の半導体装置は、第1と第2の配線と、第1の絶縁膜と、第2の絶縁膜と、第1のコンタクトと、第2のコンタクトと、を備えている。第1と第2の配線は、基板上に互いに並行するように形成される。第1の絶縁膜は、第1と第2の配線を覆うように形成される。第2の絶縁膜は、第1と第2の制御ゲート線間の所定位置で第1と第2の配線と並行して延びるように形成され、第1の絶縁膜と材料が異なる。第1のコンタクトは、第1と第2の配線間で、前記第2の絶縁膜に対して前記第1の配線側に位置する前記第1の絶縁膜を通して形成される。第2のコンタクトは、前記第1と第2の配線間で、前記第1と第2の配線が延びる方向に沿って前記第1のコンタクトと互いに位置をずらしつつ、前記第2の絶縁膜に対して前記第2の配線側に位置する前記第1の絶縁膜を通して形成される。 (もっと読む)


【課題】SRAMメモリセルを有する半導体装置において、その特性の向上を図る。
【解決手段】SRAMを構成するアクセストランジスタAcc1が配置される活性領域AcP1の下部において、絶縁層BOXを介して配置されたp型の半導体領域1Wの底部および側部が、n型の半導体領域2Wと接するように配置し、p型の半導体領域1Wをn型の半導体領域2Wでpn分離し、アクセストランジスタAcc1のゲート電極G2とp型の半導体領域1Wを接続する。そして、この接続は、アクセストランジスタAcc1のゲート電極G2の上部からp型の半導体領域1Wの上部まで延在する一体の導電性膜であるシェアードプラグSP1wによりなされる。これにより、アクセストランジスタAcc1がオン状態の場合において、バックゲートであるp型の半導体領域1Wの電位が同時に高くなり、トランジスタのオン電流を大きくできる。 (もっと読む)


【課題】酸化物半導体膜のソース領域およびドレイン領域の導電率を高めることで、高いオン特性を有する酸化物半導体膜を用いたトランジスタを提供する。
【解決手段】第1の領域および第2の領域を有し、少なくともインジウム(In)を含む酸化物半導体膜と、少なくとも酸化物半導体膜の第1の領域と重畳して設けられたゲート電極と、酸化物半導体膜およびゲート電極の間に設けられたゲート絶縁膜と、少なくとも一部が酸化物半導体膜の第2の領域と接して設けられた電極と、を有し、酸化物半導体膜は、酸化物半導体膜と電極との界面近傍のInの濃度が高く、界面から15nmの範囲で遠ざかるに従いInの濃度が低くなる。なお、酸化物半導体膜の第1の領域はトランジスタのチャネル領域として機能し、第2の領域はトランジスタのソース領域、ドレイン領域として機能する。 (もっと読む)


【課題】半導体装置の特性の向上を図る。
【解決手段】本発明の半導体装置は、(a)素子分離領域STIにより囲まれた半導体領域3よりなる活性領域Acに配置されたMISFETと、(b)活性領域Acの下部に配置された絶縁層BOXとを有する。さらに、(c)活性領域Acの下部において、絶縁層BOXを介して配置されたp型の半導体領域1Wと、(d)p型の半導体領域1Wの下部に配置されたp型と逆導電型であるn型の第2半導体領域2Wと、を有する。そして、p型の半導体領域1Wは、絶縁層BOXの下部から延在する接続領域CAを有し、p型の半導体領域1Wと、MISFETのゲート電極Gとは、ゲート電極Gの上部から接続領域CAの上部まで延在する一体の導電性膜であるシェアードプラグSP1により接続されている。 (もっと読む)


【課題】微細化されたトランジスタのオン特性を向上させる。微細化されたトランジスタを歩留まりよく作製する。
【解決手段】一対の低抵抗領域及び該低抵抗領域に挟まれるチャネル形成領域を含む酸化物半導体層と、ゲート絶縁層を介してチャネル形成領域と重畳する第1のゲート電極層と、第1のゲート電極層のチャネル長方向の側面及びゲート絶縁層の上面と接し、一対の低抵抗領域と重畳する一対の第2のゲート電極層と、第2のゲート電極層上の、側端部を第2のゲート電極層の側端部と重畳する一対の側壁絶縁層と、を有する半導体装置を提供する。 (もっと読む)


【課題】酸化物半導体膜と金属膜との接触抵抗を低減させ、オン特性の優れた酸化物半導体膜を用いたトランジスタを提供する。
【解決手段】絶縁表面上の一対の電極と、一対の電極と接して設けられる酸化物半導体膜と、酸化物半導体膜上のゲート絶縁膜と、ゲート絶縁膜を介して酸化物半導体膜と重畳するゲート電極と、を有し、一対の電極において、酸化物半導体膜と接する領域にハロゲン元素を含む半導体装置とする。さらに、一対の電極において、酸化物半導体膜と接する領域にハロゲン元素を含ませる方法として、フッ素を含む雰囲気におけるプラズマ処理を用いることができる。 (もっと読む)


1 - 20 / 1,512