説明

Fターム[5F092AC30]の内容

ホール/MR素子 (37,442) | 素子の種類 (3,422) | その他 (64)

Fターム[5F092AC30]に分類される特許

1 - 20 / 64


【課題】 磁気転移温度より高い温度でも電気磁気効果を発現する電気磁気効果材料を提供する。
【解決手段】 磁性イオンを含むオケルマナイト構造を有する電気磁気効果材料を用いた電気磁気効果素子であって、前記電気磁気効果材料はAMXであって、AはCa,Sr,Baであり、XはGe,Siであり、Mは磁性イオンである電気磁気効果素子を提供する。 (もっと読む)


【課題】磁壁の移動が可能となる閾値電流密度を、従来技術であるスピントルクを利用して電流で磁壁移動を行った場合と比較して低減する磁壁移動型の磁気記録素子構造及び閾値電流密度を低減化させる磁気記録方法を提供すること。
【解決手段】本発明の磁壁移動型の磁気記録素子は、金属層/磁性層/非伝導層の3層膜から構成される実効磁場発生構造を持ち、前記磁性層に電流を流したときに発生する実効磁場とスピントルクを用いて前記磁性層中の磁壁の位置を制御することを特徴とする。 (もっと読む)


【課題】 本発明の実施形態によれば、スピン波素子のスピン波の集積化が行えて、スピン波素子が発生するスピン波の相互干渉を抑制することができるスピン波素子を提供することができる。
【解決手段】 基板と、前記基板上に設けられた電極層と、前記電極層上に設けられ、磁化が積層方向又は積層方向に対して垂直方向に向いている第1の強磁性層を含む多層膜と、前記多層膜上の第1の領域に設けられた第2の強磁性層と、前記第2の強磁性層上に設けられた中間層と、前記中間層上に設けられた第3の強磁性層と、前記多層膜上の前記第1の領域と離間して設けられた前記多層膜上の第2の領域に設けられた検出部と、前記第3の強磁性層上に設けられた第1の電極と、前記検出部上に設けられた第2の電極と、を備える。 (もっと読む)


【課題】低い消費電力で動作する磁気メモリ素子の実現。
【解決手段】垂直磁化膜であって情報に対応して磁化の向きが変化する記憶層と、記憶層に対して非磁性層を介して設けられる垂直磁化膜であって磁化方向が固定されて記憶された情報の基準となる参照層とを有する磁気メモリ素子に、磁化が膜面内に環状とされた渦磁化層を設けるようにする。渦磁化層は、記憶層の、参照層側の面とは反対側の面に対して、非磁性層を介して設ける。 (もっと読む)


【課題】安定かつ大きなマイクロ波磁界を発生するマイクロ波発振器、磁気記録ヘッドおよび磁気記録装置を提供する。
【解決手段】マイクロ波発振器10は、外部磁界に応じてマイクロ波磁界を発生する発振素子11と、発振素子11の一の面に配置された第1電極13と、発振素子11の一の面と対向する他の面に配置された第2電極14とを備え、発振素子11は、ボルテックス状態の磁区構造を有する磁性層を有し、ボルテックスの中心が移動することなく、第1電極13および第2電極14の一方から他方の方向へ注入されたスピン偏極した電子によってマイクロ波磁界を発生する。 (もっと読む)


【課題】簡単な構成で、電子や正孔のスピンの向きを制御できるようにする。
【解決手段】半導体より構成されたキャリアを閉じ込める閉じ込め部101、および閉じ込め部101よりエネルギーギャップの大きい材料から構成された障壁部102から構成された閉じ込め構造103を備える。また、閉じ込め構造103に、障壁部102を構成する材料のエネルギーギャップより大きなエネルギーの光を照射する第1光照射部104と、閉じ込め構造103に、閉じ込め部101を構成する半導体のエネルギーギャップより大きく、障壁部102を構成する材料のエネルギーギャップより小さなエネルギーで、右回りおよび左回りの中より選択された円偏光の光を照射する第2光照射部105とを備える。 (もっと読む)


【解決課題】ナノ構造体を有する磁気及び電気エネルギーの相互変換素子を提供する。
【解決手段】ナノ構造体30を、第1の硬質磁性層34と第1の軟質磁性層35と第2の硬質磁性層36と第2の軟質磁性層37と第3の硬質磁性層38とを積層して構成する。第1及び第2の電極40,41と、中央電極42と、ナノ構造体の第1電極と中央電極との間に磁壁を保持できる第1の磁壁保持部と、ナノ構造体の第2電極と中央電極との間に磁壁を保持できる第2の磁壁保持部と、を備える。第1の硬質磁性層に第1電極を接続し、第3の硬質磁性層に第2電極を接続し、第2の硬質磁性層に中央電極を接続し、第1及び第2の軟質磁性層は磁壁を保持する磁壁保持部とする。第1及び第2の磁壁保持部の磁気エネルギーはナノ構造体の両端部側の磁気エネルギーよりも小さく、第1の磁壁保持部の磁気エネルギーは第2の磁壁保持部の磁気エネルギーよりも大きくする。 (もっと読む)


【課題】ライトマージンを上げることにより、記録密度を向上させることが可能な磁気ヘッド、およびこれを備えたディスク装置を提供する。
【解決手段】ディスク装置の磁気ヘッドは、記録媒体12の記録層23に対し垂直な記録磁界を印加する主磁極66と、主磁極のトレーリング側にライトギャップを置いて対向し、主磁極とともに磁気回路を形成するリターン磁極68と、主磁極およびリターン磁極が形成する磁気回路に磁束を励起するコイル65と、それぞれ主磁極とリターン磁極との間に設けられ、磁気共鳴周波数の互いに異なる複数の磁性膜を有し、記録媒体に高周波磁界をそれぞれ印加する複数の高周波発振素子70a、70bと、高周波発振素子に通電するための電気回路80と、を備えている。 (もっと読む)


【課題】 小さな駆動電流で効率よく高周波磁界を発生させることができる磁気記録ヘッド及び磁気記録再生装置を提供することを目的とする。
【解決手段】 第1の強磁性層10bと、第2の強磁性層30と、第1の強磁性層10bと第2の強磁性層30との間に設けられた中間層22と、第1の強磁性層10bの中間層22が設けられた側とは反対側に設けられたCoIr合金を含む第3の強磁性層10aと、第3の強磁性層10aの第1の強磁性層10bが設けられた側とは反対の側に設けられた主磁極61(第1の磁極)と、第2の強磁性層30の中間層22が設けられた側とは反対の側に設けられたリータンパス62(第2の磁極)とを備えることを特徴とする磁気記録ヘッド110。 (もっと読む)


【課題】酸化亜鉛薄膜の結晶性(品質)を維持したまま、キャリアを得るための不純物を添加せずにキャリヤ濃度を制御して、室温において飽和磁化と残留磁化が大きな値の強磁性を発現する酸化亜鉛薄膜からなる磁性半導体とその製造方法及び強磁性発現方法を提供する。
【解決手段】磁性半導体の製造方法は、遷移元素を添加した酸化亜鉛の原料ターゲット19から原料を飛散させて基板20上に薄膜を成膜する薄膜製造装置10を用い、原料ターゲット19と基板20との間にグリッド電極18を設置し、グリッド電極18に電圧を印加し、原料をグリッド電極18を通過させることで基板20上に薄膜を作製する。 (もっと読む)


【課題】 既に市場で大量に生産されているM(マグネトプラムバイト)型フェライト磁石により、外部磁場で電流を誘起でき、外部磁場で電気分極の強度や方向を制御でき、また、外部電場で誘起した磁化の強度や方向を制御でき、且つ、室温の動作環境温度において動作可能なマルチフェロイックス素子を提供する。
【解決手段】 M(マグネトプラムバイト)型フェライトからなる強誘電性と強磁性を合わせもつマルチフェロイックス固体材料で、室温の動作環境温度において外部磁場を作用させることにより電流を誘起する。例えば、マルチフェロイックス素子は、BaFe12-x-δScx Mgδ19(δ=0.05)結晶材料のSc濃度xが1.6から2であるマルチフェロイックス固体材料1とそれを挟むように形成される金属電極2とからなる構造を有し、金属電極2に平行に交流磁界5を印加するように配置され、金属電極2間に誘起される電流を利用する。 (もっと読む)


【課題】低消費電力でありながら、磁化方向の高速スイッチングが可能な磁気スイッチング素子を提供する。
【解決手段】この磁気スイッチング素子100は、磁性酸化物層30と、上記磁性酸化物層30の一方面側に位置する非磁性電極層40と、上記磁性酸化物層30の他方面側に位置する磁性金属層20と、上記非磁性電極層40と上記磁性金属層20との間に正逆電圧を印加するための電極と、を備える。 (もっと読む)


【課題】スピン素子を使用した弛緩発振器を提供する。
【解決手段】弛緩発振器は、電源を印加する電源部と、該電源部から印加される電源によって駆動されるスピン素子と、該スピン素子に並列に連結されるキャパシタとを含む。スピン素子は、磁場の強さによって可変な可変電圧値を有する。キャパシタは、前記スピン素子が臨界電圧範囲の最小電圧値を有すると放電し、スピン素子が前記臨界電圧範囲の最大電圧値を有すると充電する。従って弛緩発振器は、製作に必要な部品の個数が少なくて回路が単純化され、製造費用と消費電力が少ない。よって弛緩発振器は、広範囲な周波数帯域の調節が可能で活動範囲が広く、磁化反転を使用することによって高出力が可能であるという効果がある。 (もっと読む)


マルチフェロイック薄膜材料の製造方法。その方法は、マルチフェロイック前駆体溶液を提供する工程、その前駆体溶液をスピンキャスティングしてスピンキャスト膜を製造する工程、およびそのスピンキャスト膜を加熱する工程を有する。前駆体溶液は、ビスマスフェライト膜を製造するために、エチレングリコール中にBi(NO3)3o5H2OおよびFe(NO3)3o9H2Oを含有していてもよい。さらに、薄膜は、情報保存のための記憶デバイスを含む様々な技術分野において利用されうる。 (もっと読む)


本発明は、渦状態の平面磁気セル(4)のネットワークを含む磁気記憶装置(1)であって、各セルの渦コアが、反対方向でありかつセル(4)面に垂直な第1と第2の平衡位置のいずれかの磁化を有し、2つの位置のそれぞれが2進情報を表す、磁気記憶装置(1)に関する。装置(1)は、セルに格納される2進情報を書き込む手段(5、8a、8b、3)であって、各セル(4)の近傍で前記セル(4)面にほぼ垂直な第1のバイアス静磁場と前記セル(4)にほぼ平行な直線偏波無線周波数磁場とを選択的に印加する手段を含む書き込み手段(5、8a、8b、3)を含む。説明の装置はまた、点接触(7)により渦コアの周囲の領域を介し電流線を導くことにより、2つの交差する電極(6)と(9)間の選択的輸送測定を使用して、好ましくは共振的に極性を読み取る手段を含む。
(もっと読む)


【課題】室温下での動作が可能な強磁性半導体素子及びその制御方法を提供する。
【解決手段】基板11と、基板11上に設けた二酸化チタン層15と、二酸化チタン層15上に設けた遷移元素ドープ二酸化チタン層12と、遷移元素ドープ二酸化チタン層12上に設けた電解液13と、電解液13と接触するよう設けたゲート電極14と、を含む。電解液13は、CsCl、Sr(ClO、KClO、NaClO、LiClOの一以上の電解質を溶媒に溶かしてなる。ゲート電極14へのゲート電圧印加の有無に応じて、遷移元素ドープ二酸化チタン層12の強磁性の強さが変化する。遷移元素はコバルトが好ましい。 (もっと読む)


【課題】スピンRAM、スピントルク発振器などに適用できるクラスターを提案する。
【解決手段】本発明の例に係わるクラスターは、磁性発振素子としての第一磁気抵抗効果素子MTJ1と、メモリセルとしての第二磁気抵抗効果素子MTJ2とを備える。第一及び第二磁気抵抗効果素子MTJ1,MTJ2は、磁化方向が可変の磁気フリー層11−1,11−2、磁化方向が不変の磁気ピンド層12−1,12−2、及び、これらの間に配置されるスペーサー層13−1,13−2を基本構造とする。第一磁気抵抗効果素子MTJ1の磁気フリー層11−1は、第一磁気抵抗効果素子MTJ1に発振閾値電流よりも大きい電流を流したときに、第二磁気抵抗効果素子MTJ2の磁気フリー層11−2と磁気ピンド層12−2との残留磁化の磁化方向に依存した周波数で磁化振動する。 (もっと読む)


【課題】高出力及び長寿命で、発振周波数が安定な磁性発振素子を提案する。
【解決手段】本発明の磁性発振素子は、磁化方向が可変の磁気フリー層1と、磁化方向が不変の磁気ピンド層3と、両者間に配置されるスペーサー層2と、磁気フリー層1に外部磁場を与える磁場発生部7とを備える。磁気フリー層1は、一軸磁気異方性を有し、それに発振閾値電流よりも大きな電流が流れることにより磁化振動を行う。磁場発生部7は、磁化振動による反磁場に起因する発振周波数のシフト量と磁気フリー層1の一軸磁気異方性による磁場に起因する発振周波数のシフト量とを相殺する方向に外部磁場の大きさ及び方向を制御する。磁気フリー層1の磁化振動の中心となる方向と磁気ピンド層3の磁化方向とのなす角度θは、0°≦θ≦70°及び110°≦θ≦180°の範囲内にある。 (もっと読む)


【課題】電界によって分極と磁化を誘起し、その強度と方向を制御できるメモリ素子を提供する。
【解決手段】メモリ素子において、マルチフェロイック固体材料1からなる構造を有し、上下の金属電極2,2′に電界を印加するように配置し、上下の金属電極2,2′間に誘起される電荷、磁化を利用する。データの書き込みは、特定の選択されたビット線4とワード線5の間に印加する電圧による電界で分極を発生させることにより実現する。データの読み出しは、保持されている電気分極に起因する電圧強度で0もしくは1を判定すればよい。データの消去は、そのメモリセル3へ印加する電圧の符号を先に印加した電圧と反転させ、一定の強度を与えればよい。一方、分極発生すると同時に磁化6が発生する。この磁化6は磁界7をメモリセル3の外部に及ぼす。このことからメモリセル3の情報に相応した磁界を発生し得るアクティブ型メモリ素子を提供することができる。 (もっと読む)


【課題】 電子のスピン分極を利用したレーストラック・メモリ・デバイスを提供する。
【解決手段】 レーストラック・メモリ・ストレージ・デバイスは、磁壁をレーストラックに沿って一方向のみに移動させる。読み出し要素は、(レーストラックの中央部よりも)レーストラックの1つの端部に配置することができる。磁壁は、読み出し要素を横切って移動させると消滅するが、それらの対応する情報は、1つ又は複数のメモリ・デバイス(例えば、組み込みCMOS回路)に読み込まれる。次いで、情報は、計算ニーズに対して回路内で処理され、読み出し要素と対向するレーストラックの端部に配置された書き込み要素を用いて、その元の形式(レーストラックから読みだされたときの)か、又は何らかの計算後の異なる形式のいずれかで、レーストラックに書き戻される。こうしたレーストラックは、より単純に構築することができ、従来のレーストラック・メモリ・デバイスよりも動作の信頼性が高い。 (もっと読む)


1 - 20 / 64