説明

Fターム[5F101BF09]の内容

不揮発性半導体メモリ (42,765) | 動作 (2,287) | 寄生 (642) | リーク短絡防止 (498)

Fターム[5F101BF09]に分類される特許

121 - 140 / 498


【課題】電気的特性の安定した酸化物半導体膜を用いることにより、半導体装置に安定した電気的特性を付与し、信頼性の高い半導体装置を提供すること。また、結晶性の高い酸化物半導体膜を用いることにより、移動度の向上した半導体装置を提供すること。
【解決手段】表面粗さの低減された絶縁膜上に接して、結晶性を有する酸化物半導体膜を形成することにより、電気的特性の安定した酸化物半導体膜を形成することができる。これにより、半導体装置に安定した電気的特性を付与し、信頼性の高い半導体装置を提供することができる。さらに、移動度の向上した半導体装置を提供することができる。 (もっと読む)


【課題】酸化物半導体膜を用いたトランジスタに安定した電気的特性を付与し、信頼性の高い半導体装置を作製する。
【解決手段】酸化物半導体膜を用いた半導体装置であるトランジスタにおいて、酸化物半導体膜から水素を捕縛する膜(水素捕縛膜)、および水素を拡散する膜(水素透過膜)を有し、加熱処理によって酸化物半導体膜から水素透過膜を介して水素捕縛膜へ水素を移動させる。具体的には、酸化物半導体膜を用いたトランジスタのゲート絶縁膜を、水素捕縛膜と水素透過膜との積層構造とする。このとき、水素透過膜を酸化物半導体膜と接する側に、水素捕縛膜をゲート電極と接する側に、それぞれ形成する。その後、加熱処理を行うことで酸化物半導体膜から脱離した水素を、水素透過膜を介して水素捕縛膜へ移動させることができる。 (もっと読む)


【課題】第1MISFETのゲート電極と第2MISFETのゲート電極とを別工程で形成する半導体装置の製造技術において、第1MISFETと第2MISFETの信頼性向上を図ることができる技術を提供する。
【解決手段】半導体基板20上にゲート絶縁膜26、電荷蓄積膜27、絶縁膜28、ポリシリコン膜29、酸化シリコン膜30、窒化シリコン膜31およびキャップ絶縁膜32からなる積層膜を形成する。そして、フォトリソグラフィ技術およびエッチング技術を使用して、低耐圧MISFET形成領域および高耐圧MISFET形成領域に形成されている積層膜を除去する。その後、半導体基板20上にゲート絶縁膜34、36、ポリシリコン膜37およびキャップ絶縁膜38を形成する。そして、低耐圧MISFET形成領域および高耐圧MISFET形成領域にゲート電極を形成した後、メモリセル形成領域にゲート電極を形成する。 (もっと読む)


【課題】酸化物半導体を用いた半導体装置に安定した電気的特性を付与し、信頼性の高い半導体装置を提供することを目的の一とする。
【解決手段】酸化物半導体層を含むトランジスタの作製工程において、ゲート電極を形成後、インライン装置にて、酸化アルミニウム膜と酸化シリコン膜と酸化物半導体膜を大気暴露することなく連続的に形成し、さらに同インライン装置にて加熱および酸素添加処理を行い、他の酸化アルミニウム膜でトランジスタを覆った後、熱処理を行うことで、水素原子を含む不純物が除去され、且つ、化学量論比を超える酸素を含む領域を有する酸化物半導体膜を形成する。該酸化物半導体膜を用いたトランジスタは、バイアス−熱ストレス試験(BT)試験前後においてもトランジスタのしきい値電圧の変化量が低減されており、信頼性の高いトランジスタとすることができる。 (もっと読む)


【課題】酸化物半導体膜を用いたトランジスタに安定した電気的特性を付与し、信頼性の高い半導体装置を作製する。
【解決手段】酸化物半導体膜を用いた半導体装置であるトランジスタにおいて、酸化物半導体膜から水素を捕縛する膜(水素捕縛膜)、および水素を拡散する膜(水素透過膜)を有し、加熱処理によって酸化物半導体膜から水素透過膜を介して水素捕縛膜へ水素を移動させる。具体的には、酸化物半導体膜を用いたトランジスタの下地膜または保護膜を、水素捕縛膜と水素透過膜との積層構造とする。このとき、水素透過膜を酸化物半導体膜と接する側に、水素捕縛膜をゲート電極と接する側に、それぞれ形成する。その後、加熱処理を行うことで酸化物半導体膜から脱離した水素を、水素透過膜を介して水素捕縛膜へ移動させることができる。 (もっと読む)


【課題】従来のMONOS型の不揮発性半導体記憶装置の製造方法では、トップ絶縁膜のエッチング加工にウェットエッチングを用いるため、サイドエッチングが侵攻してしまうという問題があった。これにより電荷蓄積層とゲート電極との間の絶縁性が損なわれ、電気的リークが発生し、消去特性などの電気特性が低下していた。
【解決手段】メモリゲート絶縁膜の形成前に保護絶縁膜を形成し、この保護絶縁膜によりメモリゲート絶縁膜のサイドエッチングを防止する製造方法とすることで、電荷蓄積層とゲート電極との間の絶縁性が向上する。そして、この保護絶縁膜を不揮発性半導体記憶装置の製造後も側壁保護膜として残してもよい。そうすると不揮発性半導体記憶装置の完成後に、他の半導体素子を形成するためのウェットエッチング工程があったとしても、メモリゲート絶縁膜がサイドエッチングされることはない。 (もっと読む)


【課題】酸化物半導体を用いた半導体装置に安定した電気的特性を付与し、高信頼性化する。
【解決手段】酸化物半導体層を含むトランジスタの作製工程において、酸化シリコン膜上に、酸化物半導体が結晶状態における化学量論的組成比に対し、酸素の含有量が過剰な領域が含まれている非晶質酸化物半導体層を形成し、該非晶質酸化物半導体層上に酸化アルミニウム膜を形成した後、加熱処理を行い該非晶質酸化物半導体層の少なくとも一部を結晶化させて、表面に概略垂直なc軸を有している結晶を含む酸化物半導体層を形成する。 (もっと読む)


【課題】記憶内容に対する保持特性の改善を図ることが可能な半導体装置を提供する。また、半導体装置における消費電力の低減を図る。
【解決手段】チャネル形成領域に、トランジスタのオフ電流を十分に小さくすることができるワイドギャップ半導体材料(例えば、酸化物半導体材料)を用い、且つ、ゲート電極用のトレンチと、素子分離用のトレンチを有するトレンチ構造のトランジスタとする。トランジスタのオフ電流を十分に小さくすることができる半導体材料を用いることで、長期間にわたって情報を保持することが可能となる。また、ゲート電極用のトレンチを有することで、ソース電極とドレイン電極との距離を狭くしても該トレンチの深さを適宜設定することで、短チャネル効果の発現を抑制することができる。 (もっと読む)


【課題】 チャネルにおける電子の移動度低下を抑制する不揮発性半導体記憶装置及びその製造方法を提供する。
【解決手段】
実施形態に係る不揮発性半導体記憶装置は、基板を持つ。基板上方には、絶縁膜及び電極膜が交互に積層された積層体が設けられている。前記積層体を貫き、前記積層体中に弗素を含むシリコンピラーが設けられている。前記シリコンピラーの前記積層体に対向する面上にトンネル絶縁膜が設けられている。前記トンネル絶縁膜の前記積層体に対向する面上には電荷蓄積層が設けられている。前記電荷蓄積層の前記積層体に対向する面上に前記電極膜と接するようにブロック絶縁膜が設けられている。前記シリコンピラー中に埋込部が設けられている。 (もっと読む)


【課題】耐圧確保に有利な構造を提供する。
【解決手段】実施形態の半導体記憶装置は、基板上で所定方向に平行に延伸した複数の素子分離領域と、隣接する素子分離領域に挟まれた素子領域上の第1絶縁膜と、素子領域上の所定方向に間隔を空けて形成され、第1絶縁膜の上に順に積層された電荷蓄積層、第2絶縁膜、及び制御ゲート電極をそれぞれ有する複数のワードラインと、その両側に1つずつ配置され所定方向の幅がワードラインより大きい選択トランジスタと、ワードライン及び選択トランジスタの上面を覆う層間絶縁膜と、ワードライン間に位置し上部を層間絶縁膜に覆われた第1空洞部と、選択トランジスタのワードラインとは反対側の側壁部に形成され上部が層間絶縁膜で覆われた第2空洞部を備える。実施形態の半導体記憶装置は、互いに隣接する選択トランジスタ間の基板表面に酸化膜が形成され、その下の所定方向に垂直方向の断面が凸型形状になっている。 (もっと読む)


【課題】リーク電流の発生を防止でき、微細化に対して有利な半導体装置およびその製造方法を提供する。
【解決手段】実施形態によれば、半導体装置は、素子分離膜により分離される素子領域を有する半導体基板31と、前記素子領域上にゲート絶縁膜を介して設けられる第1導電層FGと、前記第1導電層および前記素子分離膜上に設けられ、前記第1導電層上に開口を有するゲート間絶縁膜IPDと、前記ゲート間絶縁膜を介して、前記素子領域上および前記素子分離膜上にわたって配置される第2導電層CG1と、前記第1導電層上に設けられ、周囲の溝により前記第2導電層と電気的に分離され、前記ゲート間絶縁膜の前記開口を介して前記第1導電層と接続される第3導電層CG2と、前記第1導電層を挟むように、前記素子領域中に隔離して設けられるソースまたはドレイン拡散層38とを具備する。 (もっと読む)


【課題】電力が供給されない状況でも記憶内容の保持が可能で、かつ、書き込み回数にも制限が無い、新たな構造の半導体装置の提供。
【解決手段】酸化物半導体材料を用いたトランジスタ162と、酸化物半導体以外の半導体材料を用いたトランジスタ160を組み合わせて用いることにより、書き込み回数にも制限が無く、長期間にわたる情報の保持ができる、新たな構造の半導体装置を実現することができる。さらに、酸化物半導体以外の半導体材料を用いたトランジスタと酸化物半導体材料を用いたトランジスタとを接続する接続電極130bを、当該接続電極と接続する酸化物半導体以外の半導体材料を用いたトランジスタの電極129より小さくすることにより、新たな構造の半導体装置の高集積化を図り、単位面積あたりの記憶容量を増加させることができる。 (もっと読む)


【課題】新たな構造の半導体装置を提供し、書き込み後の当該半導体装置のメモリセルのしきい値電圧のばらつきを小さくし、動作電圧を低減する、または記憶容量を増大する。
【解決手段】酸化物半導体を用いたトランジスタと、酸化物半導体以外の材料を用いたトランジスタとをそれぞれ有する複数のメモリセルと、複数のメモリセルを駆動する駆動回路と、駆動回路に供給する複数の電位を生成する電位生成回路と、複数のメモリセルへのデータの書き換えが終了したか否かを検知する書き込み終了検知回路と、を有し、駆動回路は、データバッファと、複数のメモリセルのそれぞれに複数の電位のうちいずれか一の電位をデータとして書き込む書き込み回路と、メモリセルに書き込まれたデータを読み出す読み出し回路と、読み出されたデータと、データバッファに保持されたデータとが一致するか否かをベリファイするベリファイ回路と、を有する。 (もっと読む)


【課題】トランジスタのチャネル部が形成される領域にU字状の縦長溝を形成し、見かけ上のチャネル長に対してチャネル長を長くする方法は、溝を掘るためにフォトリソグラフィ工程を余分に行う必要があり、コストや歩留まりの観点で問題があった。
【解決手段】ゲート電極または絶縁表面を有する構造物を利用し、三次元形状のチャネル領域を形成することにより、チャネル長が、上面から見たチャネル長に対して3倍以上、好ましくは5倍以上、さらに好ましくは10倍以上の長さとする。 (もっと読む)


【課題】NANDフラッシュメモリデバイスを電気的、物理的に小型化し、良好なデータ保持と電気的特性を備えたフローティングゲートデバイスを提供する。
【解決手段】フローティングゲートメモリデバイスの製造方法に関し、ベース基板100、埋め込み絶縁層、および単結晶半導体上部層から形成される、半導体−オン−絶縁体基板が提供される。トレンチが基板中に形成され、フローティングゲートとして働く単結晶上部部分を有する高層フィン型構造111−114を形成する。埋め込み絶縁層の一部は、フローティングゲートデバイスのトンネル酸化物層101’として働く。ゲート誘電体層160は、熱酸化により単結晶上部部分の側壁の上に形成され、薄い膜厚のゲート誘電体層を可能にする。 (もっと読む)


【課題】浮遊ゲートと制御ゲートとの間におけるリークを抑制することができる不揮発性半導体記憶装置及びその製造方法を提供することである。
【解決手段】実施形態に係る不揮発性半導体記憶装置は、シリコンを含む基板と、前記基板上に設けられたトンネル絶縁膜と、前記トンネル絶縁膜上に設けられた浮遊ゲートと、前記浮遊ゲート上に設けられたリーク抑制部と、前記リーク抑制部上に設けられたゲート間絶縁膜と、前記ゲート間絶縁膜上に設けられた制御ゲートと、を備える。前記リーク抑制部の誘電率は、前記ゲート間絶縁膜の誘電率よりも高くなっている。 (もっと読む)


【課題】微細化した半導体集積回路において用いられるキャパシタを提供する。
【解決手段】誘電体の一つの面に接して設けられた、インジウム、錫あるいは亜鉛の少なくとも一つと窒素とを有する仕事関数が5.0電子ボルト以上、好ましくは5.5電子ボルト以上のn型半導体による電極を有するキャパシタである。電極の仕事関数が高いため、誘電体のポテンシャル障壁が高くなり、誘電体が10nm以下と薄くても十分な絶縁性を保てる。特に、誘電体が、high−k材料である場合に顕著な効果が認められる。 (もっと読む)


【課題】従来のDRAMは、データを保持するために数十ミリ秒間隔でリフレッシュをしなければならず、消費電力の増大を招いていた。また、頻繁にトランジスタのオン状態とオフ状態が切り換わるのでトランジスタの劣化が問題となっていた。この問題は、メモリ容量が増大し、トランジスタの微細化が進むにつれて顕著なものとなっていた。
【解決手段】酸化物半導体を有するトランジスタを用い、ゲート電極用のトレンチと、素子分離用のトレンチを有するトレンチ構造のトランジスタとする。ソース電極とドレイン電極との距離を狭くしてもゲート電極用のトレンチの深さを適宜設定することで、短チャネル効果の発現を抑制することができる。 (もっと読む)


【課題】占有面積が小さく、高集積化、大記憶容量化が可能な半導体装置を提供する。
【解決手段】第1の制御ゲート、第2の制御ゲート及び記憶ゲートを有するトランジスタを用いる。記憶ゲートを導電体化させ、該記憶ゲートに特定の電位を供給した後、少なくとも該記憶ゲートの一部を絶縁体化させて電位を保持させる。情報の書き込みは、第1及び第2の制御ゲートの電位を記憶ゲートを導電体化させる電位とし、記憶ゲートに記憶させる情報の電位を供給し、第1または第2の制御ゲートのうち少なくとも一方の電位を記憶ゲートを絶縁体化させる電位とすることで行う。情報の読み出しは、第2の制御ゲートの電位を記憶ゲートを絶縁体化させる電位とし、トランジスタのソースまたはドレインの一方と接続された配線に電位を供給し、その後、第1の制御ゲートに読み出し用の電位を供給し、ソースまたはドレインの他方と接続されたビット線の電位を検出することで行う。 (もっと読む)


【課題】トランジスタの数を少なくした構成の記憶素子を用いた一時記憶回路を提供する。
【解決手段】一時記憶回路は複数の記憶素子を有し、複数の記憶素子それぞれは、第1のトランジスタと、第2のトランジスタとを有し、第1のトランジスタはチャネルが酸化物半導体層に形成され、ゲートに入力される制御信号によってオン状態を選択された第1のトランジスタを介して、データに対応する信号電位を第2のトランジスタのゲートに入力し、ゲートに入力される制御信号によって第1のトランジスタをオフ状態とすることによって、第2のトランジスタのゲートに当該信号電位を保持し、第2のトランジスタのソース及びドレインの一方を第1の電位としたとき、第2のトランジスタのソースとドレイン間の状態を検出することによってデータを読み出す。 (もっと読む)


121 - 140 / 498