説明

Fターム[5F103JJ01]の内容

Fターム[5F103JJ01]に分類される特許

1 - 20 / 94


【課題】p型ZnO系半導体層を形成するための新規な技術を提供する。
【解決手段】ZnO系半導体層の製造方法は、(a)下地層上方に、Zn、必要に応じてMg、O、N、及びTeを供給して、NとTeが共ドープされたMgZn1−xO(0≦x≦0.6)単結晶膜を形成する工程と(b)MgZn1−xO(0≦x≦0.6)単結晶膜上に、Zn及びMgの少なくとも一方、Te、及びNを供給して、NがドープされたMgZn1−yTe(0≦y≦1)単結晶膜を形成する工程とを有する。 (もっと読む)


【課題】表面平坦性に優れ、かつ高濃度の窒素ドーピングを実現できるZnO系薄膜を作製する方法を提供する。
【解決手段】主面の法線が結晶軸から傾斜した酸化亜鉛系基板1上に、窒素ドープ酸化亜鉛系薄膜2を形成するにあたって、少なくとも亜鉛と酸素と窒素を原料ガスとして使用し、これらを750〜900℃の温度条件で基板1に接触させて、基板1表面に、窒素をドープした酸化亜鉛系材料からなる結晶を成長させて窒素ドープ酸化亜鉛系薄膜2を形成する。原料ガスとしての酸素供給量に対する亜鉛供給量は、窒素ドープ酸化亜鉛系薄膜の亜鉛と酸素のモル比(亜鉛/酸素)が1より大きくなるようにされる。原料ガスとしての窒素は、窒素ガスを高周波で励起することによって発生させた窒素ラジカルを含む。 (もっと読む)


【課題】良好な結晶を安定して成長させることができる分子線結晶成長装置及び半導体装置の製造方法を提供する。
【解決手段】原料を放出する開口11aを有する坩堝11と、坩堝11の外周及び開口11aの縁を覆う遮蔽部材18と、遮蔽部材18を冷却する冷却部材21と、坩堝11に対向するように基板を保持する基板保持部材と、が設けられている。遮蔽部材18には、鉛直上方から坩堝11を覆う被覆部19が設けられている。 (もっと読む)


【課題】半導体発光素子において、インジウム組成の大小に対応したピーク波長が異なる複数の光を得る。
【解決手段】pn接合型のIII族窒化物半導体発光素子であって、第1の導電型を有する第1の半導体層、発光層及び第1の導電型とは逆の導電性を示す第2の半導体層が積層された積層半導体層を備え、積層半導体層の発光層は、発光層からの発光の取り出し方向と反対側に配置され第1のインジウム組成を有する第1の窒化ガリウム・インジウム層と、第1の窒化ガリウム・インジウム層より発光の取り出し方向側に配置され第1のインジウム組成より小さい組成の第2のインジウム組成を有する第2の窒化ガリウム・インジウム層と、第1の窒化ガリウム・インジウム層と第2の窒化ガリウム・インジウム層との間に設けられ、第1の窒化ガリウム・インジウム層及び第2の窒化ガリウム・インジウム層を構成する材料より格子定数が小さい材料からなる中間層と、を含む。 (もっと読む)


【課題】真性に近い単結晶GaN膜を有し、かつこの膜をn形又はp形に選択的にドープした半導体デバイスを提供する。
【解決手段】次の要素を有する半導体デバイス:基板であって、この基板は、(100)シリコン、(111)シリコン、(0001)サファイア、(11−20)サファイア、(1−102)サファイア、(111)ヒ化ガリウム、(100)ヒ化ガリウム、酸化マグネシウム、酸化亜鉛、および炭化シリコンからなる群から選択される物質からなる;約200Å〜約500Åの厚さを有する非単結晶バッファ層であって、このバッファ層は前記基板の上に成長した第一の物質を含み、この第一の物質は窒化ガリウムを含む;および前記バッファ層の上に成長した第一の成長層であって、この第一の成長層は窒化ガリウムと第一のドープ物質を含む。 (もっと読む)


【課題】ドーパントの濃度を制御して半導体層を形成する技術を提供する。
【解決手段】
真空槽51内の第二主ターゲット42を、希ガスと反応性ガスとを含有するスパッタリングガスでスパッタリングし、成膜対象物28表面に到達させて半導体層26を形成する際に、真空槽51内に配置されたドーパントを蒸着材料64として加熱し、蒸着材料64の蒸気を発生させ、成膜対象物28表面に到達させ、ドーパントを含有する半導体層26を形成する。蒸着材料64の蒸気は、成膜対象物28と蒸着材料64の間に配置した放出量制限部材63の貫通孔66を通過させることで減少させるので、半導体層26に微少量含有させることができるようになる。 (もっと読む)


【課題】主材料のみからなる薄膜と該主材料に1%以下(ppmオーダー)の副材料を添加した薄膜、およびそれらの多層や積層膜を制御性よく高品質かつ安全・安価に提供することを目的としたスパッタリング装置、スパッタリング方法および該薄膜を用いて作成された電子デバイスを提供すること。
【解決手段】形成する薄膜の主材料ターゲット1iを有する複数のマグネトロンスパッタリングカソード3mの間に、添加材料となる成分を含む副材料からなる副材料ターゲット1p,1nを有するコンベンショナルスパッタリングカソード3cを配置し、マグネトロンスパッタリングカソード3mおよびコンベンショナルスパッタリングカソード3cに投入するスパッタリング電力を独立に制御することを特徴とする。 (もっと読む)


【課題】広い範囲で制御された組成比を有し、結晶性に優れる化合物半導体の膜を用いた半導体素子を製造する方法を提供する。
【解決手段】基板110上にn型半導体およびp型半導体を含むように積層して構成された半導体素子の製造方法であって、異なるIII族元素による少なくとも2つのターゲット(第1ターゲット21および第2ターゲット22)を、V族元素を含むガスによりスパッタリングして、基板110上にIII−V族の化合物半導体の膜を形成する工程を含む。 (もっと読む)


【課題】広い範囲で制御された組成比を有し、結晶性に優れる化合物半導体の膜を用いた半導体素子を製造する方法を提供する。
【解決手段】基板110上にn型半導体およびp型半導体を含むように積層して構成された半導体素子の製造方法であって、異なるIII族元素による少なくとも2つのターゲット(第1ターゲット21および第2ターゲット22)を、V族元素を含むガスによりスパッタリングして、基板110上にIII−V族の化合物半導体の膜を形成する工程を含む。 (もっと読む)


【課題】p型伝導性のNドープZnO系半導体膜の新規な製造方法を提供する。
【解決手段】ZnO系半導体膜製造方法は、Znソースガン、Oラジカルガン、Nラジカルガン、Mgソースガンを備え、Nラジカルガンが、ラジオ周波が印加されpBNまたは石英を用いた無電極放電管を含む結晶製造装置により、NドープMgZn1−xO膜を成長させる方法であって、基板法線方向から見て、膜の成長表面側上方に、Znソースガン、Oラジカルガン、Nラジカルガン、Mgソースガンが円周方向に並んで配置されており、NラジカルガンとZnソースガンのビーム照射方向の方位角同士のなす角θを90°≦θ≦270°とするとともに、ラジオ周波パワーを、無電極放電管からスパッタリングされたBまたはSiが膜中に取り込まれない程度に低くする。 (もっと読む)


【課題】搬送中に基板がホルダから外れることを防止することができる真空蒸着装置を提供する。
【解決手段】ホルダ103aは、基板20を保持する一方面S1と、一方面S1と反対の他方面S2とを有する。またホルダ103aには、平面視において基板20の一部と重複する領域において開口部OPが設けられている。蒸着源120はホルダ103aの一方面S1に対向している。ヒータはホルダの他方面S2に対向している。固定具60は、ホルダの一方面S1上に固定され、一方面S1との間で基板20を挟むことによって基板20を固定している。 (もっと読む)


【課題】単一金属酸化物半導体材料をチャネル層として使用時に極性をp型伝導又はn型伝導に変更できる同時両極性電界効果型トランジスタを実現し、さらに、該同時両極性TFTを用いたCMOS構造のトランジスタを提供する。
【解決手段】基板上に設けたチャネル層と、前記チャネル層上又は下にゲート絶縁膜を介して設けられて前記チャネル層のキャリア濃度を制御するゲート電極を有する電界効果型トランジスタにおいて、前記チャネル層材料は、酸化第一スズ(SnO)薄膜であり、前記チャネル層とゲート絶縁膜との界面の欠陥準位密度が5×1014cm−2eV−1以下であり、前記チャネル層は、電子(n型)及び正孔(p型)伝導性の両方の動作が可能な同時両極性を有することを特徴とする同時両極性電界効果型トランジスタ。 (もっと読む)


【課題】ZnO系半導体層の新規な製造方法を提供する。
【解決手段】(a)基板上方に、(MgZn1−x(0≦x≦0.6)単結晶膜を成長させる工程と、(b)前記の(MgZn1−x(0≦x≦0.6)単結晶膜を、400℃以下で、活性酸素により酸化して、MgZn1−yO(0≦y≦0.6)単結晶膜を形成する工程と、(c)工程(a)及び(b)を繰り返して、MgZn1−yO(0≦y≦0.6)単結晶膜を積層する工程とを有するZnO系半導体層の製造方法とする。 (もっと読む)


【課題】わずかな温度差によって作動させたときでも1Vを超える電圧で動作し、マイクロワット・レベルからワット・レベルの電力が得られる、高性能薄膜熱電対およびそれを製造する方法の提供。
【解決手段】薄膜TEモジュールおよび電源のある態様は、約20cm-1よりも大きく、おそらく通常約100cm-1を超える比較的な大きなL/A比値を有する。この様な大きなL/A比値は、20℃や10℃のような比較的小さな温度差によって作動させたときでも1Vよりもずっと高い電圧を与えるμW〜W電源の製造を可能にする。 (もっと読む)


【課題】膜を形成する基板の温度制御を安定して行なう真空蒸着装置を提供する。
【解決手段】真空蒸着装置100は、基板20の上に膜を形成する真空蒸着装置であって、基板ホルダ103と、ホルダ加熱部105と、基板20上に形成する膜の原料をその内部に収容する原料保持部と、第1遮断部111と、第2遮断部112と、を備えている。第1遮断部111は、前記原料保持部側から見て、基板ホルダ103よりも外周が外側に位置することが可能である。第2遮断部112は、第1遮断部111と選択的に、前記原料保持部側から見て、基板ホルダ103よりも外周が外側に位置することが可能であり、開口部112aを有する。第2遮断部112の開口部112aの内接円の半径は、基板20の外接円の半径の1.5倍以下である。 (もっと読む)


【課題】p型III族窒化物半導体の電気特性を向上できるIII族窒化物半導体光素子を提供する。
【解決手段】窒化ガリウム系半導体領域15及び窒化ガリウム系半導体領域19は、基板13の主面13a上に設けられる。窒化ガリウム系半導体領域19は、p型ドーパントとしてマグネシウムを含むIII族窒化物半導体膜21を有しており、III族窒化物半導体膜21は、III族構成元素としてアルミニウムを含む。III族窒化物半導体膜21の酸素濃度は、1.0×1017cm−3以上の範囲にあり、III族窒化物半導体膜21の酸素濃度は、1.5×1018cm−3以下の範囲にある。また、III族窒化物半導体膜21の水素濃度は1.0×1017cm−3以上の範囲にあり、III族窒化物半導体膜21の水素濃度は1.5×1018cm−3以下の範囲にある。 (もっと読む)


【課題】NのドープされたZnO系半導体層の新規な製造方法を提供する。
【解決手段】ZnO系半導体層の製造方法は、(a)基板上方に、(MgZn1−x(0≦x≦0.6)単結晶膜を成長させる工程と、(b)(MgZn1−x(0≦x≦0.6)単結晶膜を、酸素を含まないガス雰囲気中で昇温する工程と、(c)酸素を含まないガス雰囲気中での昇温の後に、酸素を含むガスを供給し、(MgZn1−x(0≦x≦0.6)単結晶膜の全体を酸化して、NドープMgZn1−yO(0≦y≦0.6)膜を形成する工程とを有する。 (もっと読む)


【課題】SiC単結晶を成長させる際のドーパント濃度のバラツキを抑制する。
【解決手段】SiC原料粉末3とドーパント元素4の配置場所を異ならせると共に、SiC原料粉末3に対してドーパント元素4が種結晶2から離れた位置に配置されるようにする。そして、ドーパント元素4の配置場所をSiC原料粉末3の配置場所よりも低温にできる構成とする。これにより、SiC原料粉末3が昇華し始めるよりも前にドーパント元素4が気化し切ってしまうことを防止することができ、成長させたSiC単結晶のインゴットが成長初期にのみドーパントが偏析したものとなることを抑制できる。したがって、ドーパント濃度のバラツキを抑制できるSiC単結晶を製造することができる。 (もっと読む)


【課題】光電変換効率を向上させることが可能な光電変換素子及びその製造方法を提供する。
【解決手段】低温で成長させることにより作製した第1窒化ガリウム層と、該第1窒化ガリウム層の表面に形成された窒化インジウム量子ドットと、を有する光電変換素子、及び、低温で成長させることにより窒化ガリウム層を形成する第1工程と、該第1工程によって形成された窒化ガリウム層の表面に窒化インジウム量子ドットを形成する第2工程と、を有する、光電変換素子の製造方法とする。 (もっと読む)


【課題】 真性に近い単結晶GaN膜を有し、かつこの膜をn形又はp形に選択的にドープした半導体デバイスを提供する。
【解決手段】 次の要素を有する半導体デバイス:基板であって、この基板は、(100)シリコン、(111)シリコン、(0001)サファイア、(11−20)サファイア、(1−102)サファイア、(111)ヒ化ガリウム、(100)ヒ化ガリウム、酸化マグネシウム、酸化亜鉛、および炭化シリコンからなる群から選択される物質からなる;約200Å〜約500Åの厚さを有する非単結晶バッファ層であって、このバッファ層は前記基板の上に成長した第一の物質を含み、この第一の物質は窒化ガリウムを含む;および前記バッファ層の上に成長した第一の成長層であって、この第一の成長層は窒化ガリウムと第一のドープ物質を含む。 (もっと読む)


1 - 20 / 94