説明

Fターム[5F110AA03]の内容

薄膜トランジスタ (412,022) | 目的 (20,107) | 動作の高速化 (3,617) | 電極、配線の低抵抗化 (732)

Fターム[5F110AA03]に分類される特許

161 - 180 / 732


【課題】高い開口率を得ながら十分な保持容量(Cs)を確保し、また同時に容量配線の負荷(画素書き込み電流)を時間的に分散させて実効的に低減する事により、高い表示品質をもつフロント型プロジェクタである。
【解決手段】チャネル形成領域、ソース領域、及びドレイン領域を有する半導体層と、島状のゲート電極とを備えた薄膜トランジスタを有し、ゲート電極が接続する第1配線と、ソース領域又はドレイン領域が接続する第2配線とは直交し、第2配線や容量配線と平行かつ重なるように配置されている。 (もっと読む)


サブストレートとサブストレートの上に形成された半導体ボディを有する半導体デバイスである。半導体ボディはソース領域とドレイン領域を有している。ソース領域、ドレイン領域、またはその組み合わせは、第一の側面、第二の側面、及び上面を有している。第一の側面は第二の側面と向かい合っており、上面は底面と向かい合っている。ソース領域、ドレイン領域、またはその組み合わせは、実質的に全ての第一の側面の上に、実質的に全ての第二の側面の上に、そして上面の上に、形成されたメタル層を有している。
(もっと読む)


【課題】ゲート電極にシリサイドを形成しつつ、拡散領域に接続するコンタクトとゲート電極の間隔を確保する。
【解決手段】被覆絶縁膜120は、ゲート電極140のチャネル幅方向における少なくとも一部上に形成されている。拡散領域170は素子形成領域104に位置する基板100に形成され、トランジスタ110のソース及びドレインとなる。絶縁層200は、素子形成領域104上、ゲート電極140上、及び被覆絶縁膜120上に形成されている。コンタクト210は絶縁層200に形成され、拡散領域170に接続している。シリサイド層142は、ゲート電極140上に形成されている。サイドウォール160は、被覆絶縁膜120が形成されている領域においてはゲート電極140より高く形成されている。そしてコンタクト210は、ゲート電極140のうち被覆絶縁膜120が形成されている領域に面している。 (もっと読む)


本発明の実施例として、半導体装置上のエピタキシャル領域を示した。ある実施例では、エピタキシャル領域は、成膜−エッチングプロセスを経て基板に成膜される。周期的な成膜−エッチングプロセスの間に、スペーサの下側に形成されるキャビティは、エピタキシャルキャップ層によって埋め戻される。エピタキシャル領域およびエピタキシャルキャップ層は、チャネル領域での電子移動度を改善し、短チャネル効果が抑制され、寄生抵抗が低下する。
(もっと読む)


【課題】半導体膜とソース・ドレイン電極とを好適に電気的接合させる。
【解決手段】駆動トランジスタ6における半導体膜6bの表面凹凸はエッチバックにより緩和されており、その半導体膜6bが一対の不純物半導体膜6f,6gと接する上面側が平坦化されているので、半導体膜6bと不純物半導体膜6f,6gとの界面は乱れることなく好適に接合される。そして、不純物半導体膜6f,6gを介して、ドレイン電極6hとソース電極6iが半導体膜6bに好適に接合されるので、ドレイン電極6hとソース電極6iが半導体膜6bに好適に電気的接合されるようになる。 (もっと読む)


【課題】配線抵抗に伴う電圧降下や信号遅延によるトランジスタへの信号の書き込み不良を防止した半導体装置を提供することを課題の一つとする。例えば、表示装置の画素に設けたトランジスタへの書き込み不良が引き起こす階調不良などを防止し、表示品質の高い表示装置を提供することを課題の一つとする。
【解決手段】配線抵抗が低い銅を含む配線に、バンドギャップが広く、且つキャリア濃度が低い高純度化された酸化物半導体を接続してトランジスタを作製すればよい。バンドギャップが広い酸化物半導体を用いて、トランジスタのオフ電流を低減するだけでなく、キャリア濃度が低い高純度化された酸化物半導体を用いて正のしきい値電圧を有し、所謂ノーマリーオフ特性のトランジスタとして、オフ電流とオン電流の比を大きくできる。 (もっと読む)


【課題】フィン型半導体領域の側面にN型不純物を導入して低抵抗の不純物領域を形成できるようにし、それによって、所望の特性を持つN型のフィン型半導体装置を実現する。
【解決手段】基板11上にフィン型半導体領域13を形成した後、フィン型半導体領域13の少なくとも側部にN型不純物をプラズマドーピングによって導入することにより、フィン型半導体領域13の側部にN型不純物領域27bを形成する。プラズマドーピング時のソースパワーをY[W]としたときに、N型不純物を含むガスの単位時間・単位体積当たりの供給量を5.1×10-8/((1.72.51/24.51)×(Y/500))[mol/(min・L・秒)]以上に設定すると共に、希釈ガスの単位時間・単位体積当たりの供給量を1.7×10-4/((202.51/24.51)×(Y/500))[mol/(min・L・秒)]以上に設定する。 (もっと読む)


【課題】より良好な電気的特性を有する化合物半導体を用いた薄膜トランジスタを有する
半導体装置、及びその作製方法を提供することを目的とする。
【解決手段】半導体層として化合物半導体材料を用い、半導体層とソース電極層及びドレ
イン電極層との間に、それぞれ導電性の有機化合物及び無機化合物を含むバッファ層を形
成する。バッファ層は有機化合物及び無機化合物を含む層として形成される。化合物半導
体材料を用いた半導体層とソース電極層及びドレイン電極層との間に介在するバッファ層
によって、半導体層とソース電極層及びドレイン電極層との導電性は向上し、電気的に良
好な接続を行うことができる。 (もっと読む)


【課題】 本発明は、大画面化しても低消費電力を実現した半導体装置の構造を提供する。
【解決手段】 絶縁表面上に形成されたゲート電極と、前記絶縁表面上に形成された第1の配線と、前記ゲート電極上に形成された絶縁膜と、前記絶縁膜上に形成された半導体膜と、第1の配線上に形成された第2の配線と、を有し、前記第1の配線は、前記ゲート電極と同じ材料からなり、表面に前記ゲート電極よりも低抵抗な材料を有し、前記第2の配線を介して前記半導体層と電気的に接続し、前記第1の配線の低抵抗化を図る。 (もっと読む)


【課題】半導体膜の厚みを適当な範囲に制御することによって、大きいドレイン電流を有するとともに、所望の電気的特性を備える半導体装置の製造方法、を提供する。
【解決手段】半導体装置の製造方法は、50nmを超え150nm以下の厚みを有し、第1の層7mと第2の層7nとを有する半導体膜7を形成する工程を備える。半導体膜7を形成する工程時、第1の層7mに含まれる水素の割合は、第2の層7nに含まれる水素の割合よりも小さい。半導体装置の製造方法は、半導体膜7を熱処理することによって、半導体膜7に含まれる水素を低減する工程と、ゲート絶縁膜17およびゲート電極21を形成する工程と、半導体膜7にソース領域9およびドレイン領域13を形成する工程と、半導体膜7を水素雰囲気中で熱処理することによって、半導体膜7に含まれる水素を0.5原子%以上10原子%以下に設定する工程とを備える。 (もっと読む)


【課題】酸化物半導体層を用いる薄膜トランジスタにおいて、酸化物半導体層と電気的に接続するソース電極層又はドレイン電極層との接触抵抗の低減を図ることを課題の一とする。
【解決手段】ソース電極層又はドレイン電極層を2層以上の積層構造とし、その積層のうち、酸化物半導体層と接する一層を酸化物半導体層の仕事関数より小さい仕事関数を有する金属の酸化物又はその金属合金の酸化物とする。二層目以降のソース電極層又はドレイン電極層の材料は、Al、Cr、Cu、Ta、Ti、Mo、Wから選ばれた元素、又は上述した元素を成分とする合金か、上述した元素を組み合わせた合金等を用いる。 (もっと読む)


【課題】銅を含む層とチタニウムを含む層とをエッチングする時に、非過水系のエッチング液を使用して工程の安定性を向上させる。
【解決手段】本発明は、薄膜トランジスタ表示板に対する発明であって、より詳細には、銅(Cu)とチタニウム(Ti)とをそれぞれ含む二重層配線に形成される薄膜トランジスタ表示板に関し、構造的にはチタニウムを含む層が銅を含む層より幅が広くて、チタニウムと銅とを共にエッチングする段階と、別にエッチングする段階とを含めて製造することを特徴とする。また、ゲート絶縁膜に段差が形成されている。 (もっと読む)


【課題】チャネル抵抗の増大を回避させた薄膜トランジスタの提供。
【解決手段】ボトムゲート型の薄膜トランジスタであって、ゲート絶縁膜上にゲート電極の形成領域に開口を有する層間絶縁膜が形勢され、半導体膜は前記開口を被って層間絶縁膜上に形成され、
前記層間絶縁膜は前記ゲート絶縁膜よりも窒化物を多く含み、前記半導体膜は、前記ゲート絶縁膜および前記層間絶縁膜面に形成された少なくともGeを含む半導体結晶核上に形成された微結晶半導体膜あるいは多結晶半導体膜によって構成されている。 (もっと読む)


【課題】薄膜トランジスタにおいて透明導電膜とAl合金膜が直接接続する構造を備えた表示装置であって、上記腐食防止用塗料の塗布や剥離といった更なる工程を設けることなく、ピンホール腐食を防止することのできる表示装置を提供する。
【解決手段】薄膜トランジスタにおいて透明導電膜とAl合金膜が直接接続する構造を備えた表示装置であって、前記Al合金膜が、Niおよび/またはCoを0.15原子%以下(0原子%を含まない)、Geを0.2原子%以上2.0原子%以下、およびLa、Gd、NdおよびYよりなる群から選択される1種以上の元素を0.05原子%以上1.0原子%以下含有し、かつ、前記Al合金膜の表面において観察される腐食孔のアスペクト比(腐食深さ/腐食直径)が0.12以下であることを特徴とする表示装置。 (もっと読む)


【課題】寄生抵抗のさらなる低減を図る半導体装置を提供する。
【解決手段】ガラス基板1上にシリコン窒化膜2およびシリコン酸化膜3が形成されている。そのシリコン酸化膜3上に、ソース領域45、ドレイン領域46、チャネル領域40、GOLD領域41,42、ゲート絶縁膜5およびゲート電極6aを含むn型GOLD構造の薄膜トランジスタT4と、ソース領域45、ドレイン領域46、チャネル領域40、ゲート絶縁膜5およびゲート電極6aを含むn型SD構造の薄膜トランジスタT5と、p型のソース領域45、ドレイン領域46、チャネル領域40、ゲート絶縁膜5およびゲート電極6aを含むp型の薄膜トランジスタT6とが形成されている。 (もっと読む)


【課題】長期間貯蔵された古い金属ナノ粒子を含有する組成物を用いた場合であっても、高い導電性を有する電子デバイスの導電性フィーチャを提供することである。
【解決手段】電子デバイスの導電性フィーチャは、有機系安定剤が表面上に存在する金属ナノ粒子を含有する組成物を、基材上に成膜して成膜組成物を形成し、前記成膜組成物を加熱し、前記成膜組成物をアルカリ組成物に接触させて導電性フィーチャを形成する、ことを含む方法により形成される。前記アルカリ組成物としては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム、アンモニア、炭酸ナトリウム、酢酸ナトリウム、有機アミン、イミダゾール、ピリジン、又はその混合物を含むことが好ましく、有機安定剤としては、チオール、アミン、カルボン酸、カルボン酸塩、ポリエチレングリコール、又はピリジンであることが好ましい。 (もっと読む)


【課題】不均一な半導体装置のアクティブ領域パターン形成方法を提供する。
【解決手段】具体例によると、少なくとも3つのアクティブ領域を含む半導体装置が提供される。少なくとも3つのアクティブ領域は隣接する。少なくとも3つのアクティブ領域の縦軸は平行で、少なくとも3つのアクティブ領域は、それぞれ、対応するアクティブ領域の縦軸と交差する辺縁を有する。少なくとも3つのアクティブ領域の辺縁は弧形を形成する。 (もっと読む)


【課題】製造工程を簡略化しつつソース電極及びドレイン電極の導電性を向上させた薄膜トランジスタ及びその製造方法を提供する。
【解決手段】本発明の薄膜トランジスタの製造方法は、基板101上にゲート電極103を形成する工程と、ゲート電極103上にゲート絶縁層104を形成する工程と、ゲート絶縁層104上にアモルファスシリコン層105を形成する工程と、アモルファスシリコン層105上にアルミニウム層111を形成し、アルミニウム層111上にモリブデンタングステン層112を形成し、アルミニウム層111及びモリブデンタングステン層112を少なくとも含む積層体から構成されるソース電極109及びドレイン電極110を形成する工程と、ソース電極109及びドレイン電極110をマスクとしアモルファスシリコン層105にレーザを照射することでアモルファスシリコン層105の一部を結晶化させチャネル領域を形成する工程とを含む。 (もっと読む)


【課題】電気特性が良好な薄膜トランジスタ及び当該薄膜トランジスタをスイッチング素子として用いた半導体装置を提供することを目的の一とする。
【解決手段】薄膜トランジスタが、絶縁表面上に形成されたゲート電極と、ゲート電極上のゲート絶縁膜と、ゲート絶縁膜上においてゲート電極と重なっており、なおかつ、酸化物半導体が有する一または複数の金属の濃度が、他の領域よりも高い層を含む酸化物半導体膜と、層に接するように酸化物半導体膜上に形成された一対の金属酸化膜と、該金属酸化膜に接するソース電極またはドレイン電極とを有する。そして、金属酸化膜は、ソース電極またはドレイン電極に含まれる金属が酸化することで形成されている。 (もっと読む)


【課題】酸化物半導体層を用いた、表示装置に代表される半導体装置において、画面サイズの大型化や高精細化に対応し、表示品質が良く、安定して動作する信頼性のよい半導体装置を提供することを課題の一つとする。
【解決手段】引き回し距離の長い配線にCuを含む導電層を用いることで、配線抵抗の増大を抑える。また、Cuを含む導電層を、TFTのチャネル領域が形成される酸化物半導体層と重ならないようにし、窒化珪素を含む絶縁層で包むことで、Cuの拡散を防ぐことができ、信頼性の良い半導体装置を作製することができる。特に、半導体装置の一態様である表示装置を大型化または高精細化しても、表示品質が良く、安定して動作させることができる。 (もっと読む)


161 - 180 / 732