説明

Fターム[5F110HL21]の内容

薄膜トランジスタ (412,022) | ソース、ドレイン−コンタクトホール介在 (16,138) | 電極、配線の製法 (3,290)

Fターム[5F110HL21]の下位に属するFターム

Fターム[5F110HL21]に分類される特許

1 - 20 / 26


【課題】電源電位の供給が遮断されたときでもデータの保持が可能で、且つ、低消費電力化が可能なプログラマブルなアナログデバイスを提供する。
【解決手段】アナログ素子を含むユニットセルを複数並列に接続されたプログラマブル回路とし、ユニットセル毎に導通または非導通の切り替えを行う。また、当該ユニットセルのスイッチとして、オフ電流を十分に小さくすることができる第1のトランジスタと、ゲート電極が第1のトランジスタのソース電極又はドレイン電極と電気的に接続された第2のトランジスタと、を含む構成とし、当該第2のトランジスタのゲート電位によってユニットセルの導通または非導通を制御する。 (もっと読む)


【課題】高温処理プロセスを適用することなく、酸化物半導体膜を効率的に製造できる薄膜トランジスタの製造方法を提供する。
【解決手段】
基板1上にゲート電極2を所定のパターンで形成する工程と、ゲート電極2を覆うゲート絶縁膜3を所定のパターンで形成する工程と、ゲート絶縁膜3上にアモルファス酸化物膜4’を所定のパターンで形成する工程と、アモルファス酸化物膜4’上にソース電極6S及びドレイン電極6Dを所定のパターンで形成する工程と、ソース・ドレイン電極6S,6D間で露出するアモルファス酸化物膜4’を少なくとも覆う保護膜7を形成する工程とを有する。このアモルファス酸化物膜4’の形成工程では、RFスパッタリング法でアモルファス酸化物膜4’を成膜し、保護膜7の形成工程では、RFスパッタリング法で保護膜7を成膜して、アモルファス酸化物膜4’を半導体化する。 (もっと読む)


【課題】半導体素子の微細化に伴うゲート電極サイズの微細化においても、ゲート電極とチャネル形成領域間のリーク電流が抑制された半導体素子を提供することを課題の一とする。また、小型かつ高性能な半導体装置を提供することを課題の一とする
【解決手段】チャネル形成領域として機能する半導体層上に、ゲート絶縁膜として比誘電率が10以上の酸化ガリウムを含む絶縁膜を形成し、前記酸化ガリウム上にゲート電極が形成された構造を有する半導体素子を作製することにより、課題の一を解決する。また、前記半導体素子を用いて半導体装置を作製することにより、課題の一を解決する。 (もっと読む)


【課題】3次元デバイスのような多層配線を有する半導体装置をより簡単な工程で作製する製造方法を提供する。
【解決手段】第1層10と第2層20とを、それぞれのTSV6が略一直線上になるように積層する半導体装置の製造方法で、基板の上面に入出力回路を構成するトランジスタ3を形成し、トランジスタ3を覆うように絶縁層4を形成し、絶縁層中にTSV6を形成する工程を含む第1層の製造工程と、基板20を準備し、基板の上面に論理回路を構成するトランジスタ13を形成し、トランジスタ13を覆うように絶縁層4を形成し、絶縁層中にTSV6を形成する工程を含む第2層の製造工程と、第1層のTSV6と第2層のTSV6とが略一直線上になるように、第1層と第2層の、基板の反対側面を接続する接続工程と、第1層の基板1を除去する工程とを含む。 (もっと読む)


【課題】凹凸のあるスルーホール部分であっても、層間絶縁膜の上下の導電層間で良好な電気的な接続が得られる、版を用いた印刷法による薄膜トランジスタアレイの製造方法を提供すること。
【解決手段】版に形成された画素電極パターンのスルーホールに対向する位置に保持されたインクの量を、画素電極パターンのスルーホールに対向する位置以外の部分に保持されたインクの量よりも多くすることによって、凹凸のあるスルーホール部分であっても、層間絶縁膜の上下の導電層間で良好な電気的な接続が得られる、版を用いた印刷法による薄膜トランジスタアレイの製造方法を提供することができる。 (もっと読む)


【課題】ゲート電極の仕事関数で本質的にしきい値電圧が決定されるFINFETにおいて、ゲート電極の材料を変えることなく、FINFETのしきい値電圧を調整することができる技術を提供する。
【解決手段】基板層1Sと、基板層1S上に形成された埋め込み絶縁層BOXと、埋め込み絶縁層BOX上に形成されたシリコン層からなるSOI基板上にFINFETが形成されている。このとき、基板層1S内に埋め込み絶縁層BOXと接触する第1半導体領域FSR1が形成されている。そして、SOI基板のシリコン層を加工してフィンFIN1が形成されている。このとき、フィンFIN1のフィン幅に対するフィン高さの比が1以上2以下になるように形成されており、かつ、第1半導体領域FSR1に電圧を印加することができるようになっている。 (もっと読む)


【課題】 低抵抗率のコンタクトを実現した半導体装置の製造方法を提供する。
【解決手段】半導体と接した第1の金属層を酸化防止用の第2の金属層で覆った状態で、第1の金属層のみをシリサイド化し、酸素混入のないシリサイド層を形成する。第1の金属層の材料として、半導体との仕事関数の差が所定の値となるような金属が用いられ、第2の金属層の材料として、アニール温度で第1の金属層と反応しない金属が用いられる。 (もっと読む)


【課題】本発明は、コンタクト抵抗の安定性を確保して、コンタクト抵抗にばらつきを抑えることを可能にする。
【解決手段】基板11のシリコン領域12上に第1金属シリサイド層13を形成する工程と、前記基板11上に前記第1金属シリサイド層13を被覆する絶縁膜14を形成する工程と、前記絶縁膜14に前記第1金属シリサイド層13に通じるコンタクトホール15を形成する工程と、前記コンタクトホール15の内面および前記絶縁膜14上にシリサイド化される第2金属層16を形成する工程と、前記第2金属層16と前記コンタクトホール15の底部のシリコンとを反応させて前記第1金属シリサイド層13上に第2金属シリサイド層17を形成する工程とを有する。 (もっと読む)


【課題】コンタクトおよび配線形成時の合わせマージンがゼロであり、集積度を大幅に向上し、パターンレイアウトの自由度の拡大を可能とする薄膜半導体素子及びその製造方法を提供する。
【解決手段】透明絶縁性基板10上に形成され、第1導電型の不純物を含むソース領域及びドレイン領域を有する島状半導体層、前記ソース領域及びドレイン領域の間の島状半導体層上に形成されたゲート絶縁膜及びゲート電極18、前記ソース領域又はドレイン領域の表面に形成された高融点金属と半導体との化合物からなる層、前記島状半導体層及びゲート電極を覆う層間絶縁膜29、及び前記ソース領域又はドレイン領域に接続された局所配線28を具備し、前記局所配線28は、前記ソース領域又はドレイン領域の表面に形成された前記化合物層と高融点金属層との2層構造、及び前記ソース領域又はドレイン領域の外側に形成された前記高融点金属層の延長からなることを特徴とする。 (もっと読む)


【課題】サリサイドプロセスで金属シリサイド層を形成した半導体装置の性能を向上させる。
【解決手段】ゲート絶縁膜7、ゲート電極8a,8b、ソース・ドレイン用のn型半導体領域9b及びp型半導体領域10bを形成してから、半導体基板1上に金属膜及びバリア膜を形成し、第1の熱処理を行って金属膜とゲート電極8a,8b、n型半導体領域9bおよびp型半導体領域10bとを反応させることで、金属膜を構成する金属元素MのモノシリサイドMSiからなる金属シリサイド層41を形成する。その後、バリア膜および未反応の金属膜を除去してから、第2の熱処理を行い金属シリサイド層41を安定化させる。これ以降、半導体基板1の温度が第2の熱処理の熱処理温度よりも高温となるような処理は行わない。第2の熱処理の熱処理温度は、金属元素MのダイシリサイドMSiの格子サイズと半導体基板1の格子サイズが一致する温度よりも低くする。 (もっと読む)


【課題】 微細化に伴うコンタクト抵抗の増加を防止した、信頼性の高い素子特性を有する薄膜半導体装置を提供すること。
【解決手段】 透明絶縁性基板上に形成され、所定の間隔を隔てて第1導電型の不純物を含むソース領域及び第1導電型の不純物を含むドレイン領域を有する島状半導体層、前記ソース領域及びドレイン領域の間の島状半導体層上に形成されたゲート絶縁膜、前記ゲート絶縁膜上に形成されたゲート電極、前記島状半導体層及びゲート電極を覆う層間絶縁膜、及び前記ソース領域及びドレイン領域にそれぞれ接続する、前記層間絶縁膜に形成された第1及び第2のコンタクト孔内にそれぞれ埋め込まれた第1導電型の不純物を含む凸型ソース多結晶半導体層並びに第1導電型の不純物を含む凸型ドレイン多結晶半導体層を具備することを特徴とする。 (もっと読む)


【課題】支持基板上に、単結晶半導体層を多層構造とした、多層集積回路を形成する場合の、工程数の簡略化を図る。また同歩留まりの向上を図る。
【解決手段】基板面内の半導体素子の半導体接合界面領域は、支持基板側から、すなわち基板の素子が形成されていない面からレーザを直接照射し加熱することができるよう配置される。1層目の半導体素子層、2層目の半導体素子層が形成された後、支持基板側からレーザを照射することで、1層目の半導体素子層及び2層目の半導体素子層の、半導体接合界面領域の活性化を同時に行う。支持基板と前記半導体素子層との間の層は光透過性とし、レーザを減衰しない構造とする。 (もっと読む)


【課題】半導体装置の製造方法に関し、光吸収膜を利用して実行する新たな製造方法を提供する。
【解決手段】基板上に光吸収膜を堆積し、前記光吸収膜を加工して、第1の膜厚の前記光吸収膜で覆われた第1領域と、前記第1の膜厚よりも薄い第2の膜厚の前記光吸収膜で覆われた第2領域と、前記第2の膜厚よりも薄い第3の膜厚の前記光吸収膜で覆われた第3領域とを形成し、前記基板に光を照射することにより、前記基板をアニールすることを特徴とする半導体装置の製造方法。 (もっと読む)


【課題】微細加工技術に依拠するのみでなく、半導体集積回路の高性能化を図ることを目的とする。また、半導体集積回路の低消費電力化を図ることを目的とする。
【解決手段】第1導電型のMISFETと第2導電型のMISFETとで単結晶半導体層の結晶方位又は結晶軸が異なる半導体装置を提供する。結晶方位又は結晶軸は、それぞれのMISFETにおいてチャネル長方向に走行するキャリアの移動度が高くなるように配設される。このような構成とすることで、MISFETのチャネルを流れるキャリアにとって移動度が高くなり、半導体集積回路の動作の高速化を図ることができる。また、低電圧で駆動することが可能となり、低消費電力化を図ることができる。 (もっと読む)


【課題】ソース/ドレイン電極用金属膜による基板のストレスを減少させて素子の製造歩留まりを向上させる。
【解決手段】基板と、前記基板上に位置し、ソース/ドレイン領域及びチャネル領域を有する半導体層と、前記半導体層を含む基板上に位置するゲート絶縁膜と、前記半導体層のチャネル領域に対応するように、前記ゲート絶縁膜上に位置するゲート電極と、前記ゲート電極を含む基板上に位置し、前記半導体層のソース/ドレイン領域に連結されるコンタクトホールを有する層間絶縁膜と、前記コンタクトホールを介してソース/ドレイン領域に連結されるソース/ドレイン電極と、を備え、前記ソース/ドレイン電極は、第1金属膜、第2金属膜及びこれら間に介在された金属酸化膜を有する。 (もっと読む)


【課題】基板に対する熱負荷が軽減でき、大面積の基板の熱処理を行うことが可能な半導体装置の製造方法を提供する。特に、熱処理特性を向上させ、形成される半導体装置の特性を向上させる。
【解決手段】基板100上にシリコン膜を形成し、このシリコン膜に対し、水素及び酸素の混合ガスを燃料とするガスバーナー部22の火炎を基板100とガスバーナー(22a)との間に配置された遮蔽器22bの開口部22dを介して照射することにより熱処理を施す。その結果、火炎の広がりを抑えることができ、より高温でかつ均一性の高い熱処理を行うことができる。 (もっと読む)


【課題】製造工程を簡略化し、液晶表示装置のさらなるコストダウンを実現した液晶表示パネルの製造方法と液晶表示パネルを提供する。
【解決手段】液晶表示パネルのゲート配線とゲート電極GT、データ配線を含めたソース電極SD1、ドレイン電極SD2の何れかの工程、又はそれらの幾つかの工程にインクジェット直描プロセスを導入することに加えて、シリコン半導体層SIとn+コンタクト層NSの積層からなる能動層アイランドの形成にインクジェット直描プロセスを用いる。 (もっと読む)


【課題】 少ない工程数で、支持基板への十分なコンタクトが形成できる半導体装置およびその製造方法を提供する。
【解決手段】 支持基板11の主面に絶縁膜12を介して形成された半導体膜13にゲート絶縁膜20を介して形成されたゲート電極膜21と、ソース領域22およびドレイン領域23とを有する絶縁ゲート電界効果トランジスタ15と、半導体膜13および絶縁膜12を貫通し、支持基板11に達する第1開口部に、厚さが0より大きく2nm以下のシリコン酸化膜28を介して形成されたポリシリコン膜29を有する支持基板コンタクト部17とを具備する。ポリシリコン膜29と支持基板11とのコンタクト面積を十分大きく設定することにより、シリコン酸化膜28のリーク電流を介してコンタクトを得る。 (もっと読む)


シリコンオンインシュレータ(SOI)デバイス[53]およびこのようなデバイスの製造方法が提供される。このデバイスは、電圧バス[100,102]間に接続され、絶縁体層[32]および半導体基板[34]の上を覆う単結晶半導体層[30]内に形成されたMOSコンデンサ[52]を有する。このデバイスは、MOSコンデンサ[52]に蓄積された悪影響を及ぼす可能性のある電荷を放電するための少なくとも1つの放電経路[86,98,180,178]を有する。MOSコンデンサは、MOSコンデンサの第1のプレート[64]を形成する導電性電極材料と、導電性電極材料の下の、第2のプレートを形成する単結晶シリコン層[30]内の不純物ドープ領域[60]とを有する。コンデンサの第1のプレート[64]と、半導体基板内に形成されたダイオード[177]を通る放電経路とに第1の電圧バス[100]が接続されており、コンデンサの第2のプレート[60]に第2の電圧バス[102]が接続されている。
(もっと読む)


【課題】本発明の目的は、半導体膜を大粒径の結晶化が可能な半導体装置の製造方法を提供することである。
【解決手段】半導体装置の製造方法は、非単結晶半導体膜の結晶化領域に、光変調されて極小光強度線もしくは極小光強度点を有する光強度分布のレーザ光を前記非単結晶半導体膜上に設けられた第1の光吸収層を介して照射して前記結晶化領域を結晶化するレーザ照射工程、即ち結晶化工程(A)と、少なくとも結晶化された前記結晶化領域の上に形成された第2の光吸収層にレーザ光もしくはフラッシュランプ光を照射することにより前記結晶化された領域を第2の光吸収層を介して再加熱する再結晶化工程、即ち加熱工程(C)とを有する。 (もっと読む)


1 - 20 / 26