説明

Fターム[5F140BA13]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | 基板材料 (9,253) | 非単結晶半導体材料 (90) | 多結晶、ポリシリコン (59)

Fターム[5F140BA13]に分類される特許

1 - 20 / 59


【課題】本発明の目的は、新規な半導体シリコン膜及びそのような半導体シリコン膜を有する半導体デバイス、並びにそれらの製造方法を提供することである。
【解決手段】本発明の半導体シリコン膜(160)は、複数の細長シリコン粒子(22)が短軸方向に隣接してなる半導体シリコン膜である。ここでは、細長シリコン粒子(22)は、複数のシリコン粒子の焼結体である。また、このような半導体シリコン膜(160)を製造する本発明の方法は、第1のシリコン粒子分散体を、基材(100)上に塗布し、乾燥し、光(200)を照射して、第1の半導体シリコン膜(130)を形成する工程、第2のシリコン粒子分散体を、第1の半導体シリコン膜(130)に塗布し、乾燥し、光(200)を照射する工程を含む。ここで、この方法では、第1のシリコン粒子分散体の第1のシリコン粒子の分散が5nm以上である。 (もっと読む)


【目的】チャネル移動度を大きくし、チャネル抵抗を低減できるMOSゲート型炭化珪素半導体装置の提供。
【構成】トレンチの側壁に接するゲート酸化膜とチャネル反転層表面との間に他導電型シリコン半導体層が形成されるMOSゲート型炭化珪素半導体装置であって、他導電型シリコン半導体層がアモルファスシリコン層で形成し、レーザー光を前記アモルファスシリコン層に対して前記MOSゲート型炭化珪素半導体装置のチャネル電流が流れる方向と交差しない方向へスキャンしてアモルファスシリコン層をポリシリコンに変換する。 (もっと読む)


【課題】本発明は、かかる事情に鑑み、トランジスタの遮断状態を自然に実現し、半導体領域に金属領域との界面近傍の空乏層の形成を抑制しつつ、ショットキー障壁を実質的に下げることができるようにソース領域のフェルミ準位を選択することにより、駆動電流を増加させる半導体素子及び該半導体素子を備える半導体素子構造を提供することを課題とする。
【解決手段】ソース領域6及びドレイン領域7は、フェルミ準位が異なる第1金属領域10及び第2金属領域11を有し、第1金属領域10は、半導体領域5の価電子帯の頂上のエネルギーレベル以上で且つ半導体領域5の真性フェルミ準位以下のフェルミ準位を有する金属であり、第2金属領域11は、第1金属領域10のフェルミ準位以上で且つ伝導帯の底のエネルギーレベル以下のフェルミ準位を有する金属であることを特徴とする。 (もっと読む)


【課題】 高密度で、構造部寸法がより小さく、より正確な形状の半導体構造体及び電子デバイスを提供する。
【解決手段】 炭素ベース材料の上面上に配置された少なくとも一層の界面誘電体材料を含む、半導体構造体及び電子デバイスが提供される。少なくとも一層の界面誘電体材料は、炭素ベース材料のものと同じである、典型的には六方晶短距離結晶結合構造を有し、従って、少なくとも一層の界面誘電体材料が、炭素ベース材料の電子構造を変えることはない。炭素ベース材料のものと同じ短距離結晶結合構造を有する少なくとも一層の界面誘電体材料の存在により、炭素ベース材料と、誘電体材料、導電性材料、又は誘電体材料及び導電性材料の組み合わせを含む、上にある任意の材料層との間の界面結合が改善される。その結果、改善された界面結合が、炭素ベース材料を含むデバイスの形成を容易にする。 (もっと読む)



制御されたチャネル歪みおよび接合抵抗を有するNMOSトランジスタ、およびその製造方法が、本明細書で提供される。いくつかの実施形態において、NMOSトランジスタを形成するための方法は、(a)p型シリコン区域を有する基板を準備すること、(b)p型シリコン区域の上にシリコンシード層を堆積すること、(c)シリコン、シリコンおよび格子調整元素またはシリコンおよびn型ドーパントを備えるシリコン含有バルク層をシリコンシード層の上に堆積すること、(d)(c)で堆積されたシリコン含有バルク層に欠けている格子調整元素またはn型ドーパントのうちの少なくとも1つをシリコン含有バルク層の中に注入すること、(e)(d)の注入の後、シリコン含有バルク層をエネルギービームを用いてアニールすることを含むことができる。いくつかの実施形態において、基板は、その中に画定されたソース/ドレイン区域を有する、部分的に製造されたNMOSトランジスタデバイスを備えることができる。
(もっと読む)


【課題】フィン電界効果トランジスタのソース/ドレイン構造を提供する。
【解決手段】基板上のフィンチャネル本体110a、110b、フィンチャネル本体110a、110b、上に配置されたゲート電極115、およびフィンチャネル本体110a、110b、に隣接して配置され、どのフィン構造も実質的に含まない、少なくとも1つのソース/ドレイン(S/D)領域120a,120b及び125a,125bを含むフィン電界効果トランジスタ(FinFET)。 (もっと読む)


【課題】 ゲートとドレインの間で生じる電界集中を緩和する半導体装置を提供する。
【解決手段】本発明によれば,半導体基板上にゲート絶縁膜を介して形成された第1のゲート電極と、前記半導体基板上に前記ゲート絶縁膜を介して形成され、かつ、第1のゲート電極の側面に絶縁性のスペーサを介して配置された第2のゲート電極と、第1及び第2のゲート電極を挟むように前記半導体基板上に形成されたソース領域及びドレイン領域と、第1のゲート電極下方における前記半導体基板の一部の領域を挟むように形成され、第2のゲート電極及び前記ソース領域及びドレイン領域と重なるように形成された電界緩和領域と、を備える半導体装置が提供される。 (もっと読む)


【課題】 金属酸化膜半導体電界効果トランジスタ内にデバイス性能を改善するゲート構造体を提供する。
【解決手段】 基板のp型デバイス領域の上にGe含有層を形成することを含む、半導体デバイスを形成する方法が提供される。その後、基板の第2の部分内に第1の誘電体層が形成され、基板の第2の部分内の第1の誘電層及び基板の第1の部分の上を覆うように、第2の誘電体層が形成される。次に、基板のp型デバイス領域及びn型デバイス領域の上にゲート構造体を形成することができ、n型デバイス領域へのゲート構造体は希土類金属を含む。 (もっと読む)


【課題】ゲート絶縁膜とゲート電極との間の界面層にカーボン層を導入して、低い閾値電圧を実現している例では、カーボン層中のカーボンはSi半導体基板中に入り、欠陥準位を形成するため、EWFが不安定であった。本発明は上記問題点を解決するためになされたもので、p−metalを用いたMIS型半導体装置において、EWFを安定して増加させることが可能な半導体装置を提供する。
【解決手段】半導体基板10と、半導体基10上に形成された絶縁膜20と、絶縁膜20上に形成され、且つ、CN基又はCO基を含む界面層30と、界面層30上に形成された金属層40とを備えて半導体装置を構成する。 (もっと読む)


【課題】 リーク電流の低減を実現しながらも従来に比べて更に素子サイズを縮小させることが可能な、高耐圧MOSトランジスタを実現する。
【解決手段】 P型ウェル10上に、チャネル領域chを隔てて、ドレイン領域12及びドレイン側ドリフト領域7を含むN型の第一不純物拡散領域と、ソース領域12及びそース側ドリフト領域8を含むN型の第二不純物拡散領域が形成されている。また、第一不純物拡散領域の一部上方、前記チャネル領域の上方、及び前記第二不純物拡散領域の一部上方にわたってゲート酸化膜6を介してゲート電極20が形成されている。ゲート電極20は、N型にドープされており、第一及び第二不純物拡散領域の上方に位置する部分の電極20bの不純物濃度が、前記チャネル領域の上方に位置する部分20aの不純物濃度よりも低濃度である。 (もっと読む)


【課題】 閾値電圧の低い金属ゲート電極においてPMISFETの製造方法を提供する。
【解決手段】 半導体基板10上にPMISFETを作製する方法であって、半導体基板10上に絶縁膜20を形成する工程と、半導体基板10及び絶縁膜20をハロゲン化合物を含むガスにさらして、絶縁膜20上に吸着層110を形成する工程と、吸着層110上に金属を含むゲート電極40を形成して、吸着層110とゲート電極40を反応させて、吸着層110をハロゲン含有金属層にする工程とを有することを特徴とする半導体装置の製造方法。 (もっと読む)


【課題】半導体装置の実装時の特性値変動を従来よりも低減した、より高精度の特性を有する半導体装置を提供する。
【解決手段】特性値に影響の大きい対を形成したトランジスタ間の特性値変動、ここではK値の変動を等しくし、シフトを相殺する事でシフトを低減することが可能となる。希ガスのイオン注入などにより、MOSトランジスタ形成領域の結晶性を崩す。このことにより、対となったトランジスタ間でのシフトが同じになるため、結果的にパッケージング時の特性変化を低減することが可能となる。 (もっと読む)


【課題】素子基板の剛性を確保することと、ゲート絶縁膜に効率良く水素を供給することを、両立させることができる技術を提供する。
【解決手段】本発明の半導体素子の製造方法は、素子基板2の第1面側にトランジスタ3とこれに電気的につながる配線層12,16を形成する工程と、素子基板2の第1面と反対側の第2面に複数の孔21を形成する工程と、それらの孔21を通して素子基板2の第2面からトランジスタ3のゲート絶縁膜5に水素を供給する工程とを有する。 (もっと読む)


開示の実施形態は、MOSチャネル領域に一軸性歪みを与える金属ソース/ドレイン及びコンフォーマル再成長ソース/ドレインを備えた、歪みトランジスタ量子井戸(QW)チャネル領域を含む。チャネル層の除去された部分が、チャネル材料の格子間隔とは異なる格子間隔を有するジャンクション材料で充填されることで、量子井戸の頂部バリア層及び底部バッファ層によってチャネル層に発生される二軸性歪みに加えて、一軸性歪みがチャネルに発生される。
(もっと読む)


【課題】柱状半導体層が微細化されて高集積化されても、コンタクト抵抗の増加を抑制する構造の半導体装置を提供する。
【解決手段】半導体装置は、基板(半導体基板1)と、半導体基板1上に設けられた、半導体柱状部(柱状半導体層3)と、の天面に接するように設けられた、柱状半導体層3と同径以下のコンタクト柱状部(コンタクト層7)と、この天面に設けられた凹部をと備えるものである。 (もっと読む)


【課題】従来構造において二酸化シリコンのごく薄い層で起こる問題を回避しながら、特徴サイズを小さくして、集積化/極小化を増加させるような、ゲート誘電体構造とその製造方法を提供する。
【解決手段】基板とゲート電極との間に形成された、誘電体材料層を有するゲートスタック構造と、その製造方法を提供し、この誘電体材料層は、2.5nm以下の電気的厚さを有し、そして二酸化シリコン以外の、少なくとも1つの層を有する。基板上に誘電体材料層を堆積し、この誘電体材料層の上に直接導電層を堆積することにより形成する。 (もっと読む)


【課題】薄膜化した場合でもSBDやSILCが生じ難く、高い絶縁破壊耐性(SILC、TZDB、TDDBの改善)が得られる絶縁膜、それを用いた半導体素子、信頼性の高い電子デバイスおよび電子機器を提供すること。
【解決手段】主として半導体材料で構成された半導体基板2に接触して設けられ、シリコン、酸素原子、および、これらの原子以外の少なくとも1種の原子Xを含有する絶縁性無機材料を主材料として構成され、水素原子を含むゲート絶縁膜3であって、その厚さ方向の少なくとも一部において、前記原子Xの総濃度をAとし、前記水素原子の濃度をBとしたとき、B/Aが10以下なる関係を満足する領域を有している。これにより、薄膜化した場合でもSBDやSILCが生じ難く、高い絶縁破壊耐性を得ることができる。 (もっと読む)


【課題】 化学酸化膜形成法により、厚膜の絶縁被膜形成にも応じることの可能な半導体への絶縁性被膜の形成方法並びにそれを用いた半導体装置の製造方法を実現する。
【解決手段】 酸化性溶液内に、表面に酸化シリコンを含む被膜形成用基材とシリコン又はシリコン含有固体またはシリコンを含む膜で覆われた固体とを浸漬して、前記酸化性溶液の沸点以下の温度で加熱して、前記基材上に稠密な酸化シリコン膜を形成することにより、被処理用シリコン基板1上に厚膜の酸化シリコン膜4を化学的形成法で実現して、絶縁性被膜の形成並びにそれを用いた半導体装置の製造を実用的短時間で達成することができる。 (もっと読む)


半導体デバイス用のアルミニウムがドープされた金属(タンタル又はチタン)炭窒化物ゲート電極の作製方法が記載されている。当該方法は、上に誘電層を有する基板を供する工程、及びプラズマが存在しない状態で前記誘電層上に前記ゲート電極を作製する工程を有する。前記ゲート電極は、金属炭窒化物を堆積する堆積工程、及び前記金属炭窒化物上にアルミニウム前駆体の原子層を吸着させる吸着工程によって作製される。前記堆積工程及び前記吸着工程は、前記アルミニウムがドープされた金属炭窒化物ゲート電極が所望の厚さを有するまで、必要な回数だけ繰り返されて良い。
(もっと読む)


1 - 20 / 59