説明

Fターム[5F140BD04]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ゲート絶縁膜 (8,730) | 材料 (6,782)

Fターム[5F140BD04]の下位に属するFターム

Fターム[5F140BD04]に分類される特許

1 - 20 / 922






【課題】化合物半導体層を形成する前の基板の状態で非接触のスクリーニングを行うことで、事前に化合物半導体層の不良発生を認識してこれを防止することができ、歩留まりの向上及び製造コストの削減を可能とする信頼性の高い化合物半導体装置を得る。
【解決手段】偏光レーザ12によりSiC基板1の基板面に偏光レーザ光を照射し、検出部13によりSiC基板1からの発光を検出し、表示部14によりSiC基板1の発光強度の面内分布を得て、SiC基板1の窒素混入量を評価した後、SiC基板1の上方に化合物半導体積層構造2を形成する。 (もっと読む)


【課題】特性ばらつきの少ない絶縁ゲートを備えた窒化物半導体の半導体装置を提供すること。
【解決手段】 半導体装置が備える絶縁ゲートは、窒化物半導体層1上に設けられているアモルファスの酸化シリコン膜2と、酸化シリコン膜2上に設けられているゲート電極8を有している。ゲート電極8に対向する窒化物半導体層1が酸化されている。 (もっと読む)


【課題】電極構造体、それを備える窒化ガリウム系の半導体素子及びそれらの製造方法を提供する。
【解決手段】GaN系の半導体層GL10と、GaN系の半導体層上に備えられた電極構造体500A,500Bと、を備え、電極構造体500A,500Bは、導電物質を含む電極要素50A、50Bと、電極要素50A,50BとGaN系の半導体層200との間に備えられた拡散層5A、5Bと、を備え、拡散層5A,5Bは、n型ドーパントを含み、n型ドーパントは、4族元素を含み、拡散層と接触したGaN系の半導体層200の領域は、n型ドーパント(例えば、4族元素)でドーピングされる窒化ガリウム系の半導体素子である。 (もっと読む)


【課題】比較的簡素な構成で電流コラプスの発生を抑制し、デバイス特性の劣化を抑えた信頼性の高い高耐圧のAlGaN/GaN・HEMTを実現する。
【解決手段】SiC基板1上に化合物半導体積層構造2を備えたAlGaN/GaN・HEMTにおいて、3層のキャップ層2eを用いることに加え、キャップ層2eのドレイン電極5の近傍(ゲート電極6とドレイン電極5との間で、ドレイン電極5の隣接箇所)に高濃度n型部位2eAを形成し、高濃度n型部位2eAでは、そのキャリア濃度が電子供給層2dのキャリア濃度よりも高く、そのエネルギー準位がフェルミエネルギーよりも低い。 (もっと読む)


【課題】半導体装置の信頼性を向上させることができる技術を提供する。特に、ゲート電極をメタル材料で構成する電界効果トランジスタを有する半導体装置において、安定した動作特性を得ることのできる技術を提供する。
【解決手段】レジストパターン12をマスクとしたドライエッチングにより、ゲート電極13nまたはゲート電極13pを形成した後、酸素および水素を含むプラズマ雰囲気中においてアッシング処理を施すことにより、レジストパターン12を除去し、ゲート電極13nまたはゲート電極13pの側面に付着した反応生成物14を酸化する。その後、洗浄処理を施して、反応生成物14を除去する。 (もっと読む)


【課題】所定の安定した特性を有するN−MISFETとP−MISFETとを備えた半導体装置を容易に実現できるようにする。
【解決手段】半導体装置の製造方法は、半導体基板101の上に高誘電体膜121と、第1の膜122と、犠牲導電膜123と、第2の膜124とを順次形成した後、第2の膜124におけるN−MISFET形成領域101Nに形成された部分を第1の薬液を用いて選択的に除去する。この後、第2の膜124に含まれる第2の金属元素を犠牲導電膜124におけるP−MISFET形成領域101Pに形成された部分に拡散させる。続いて、犠牲導電膜124及び第1の膜122におけるN−MISFET形成領域101Nに形成された部分を、それぞれ第2の薬液及び第3の薬液を用いて選択的に除去する。第3の膜125を形成した後、第3の膜125に含まれる第3の金属元素を高誘電体膜121中に拡散させる。 (もっと読む)


【課題】結晶欠陥の発生を抑え、デバイスのリーク電流の発生、耐圧低下、しきい値電圧の継時変化、およびショートチャネル効果を抑制することが可能な半導体装置を提供すること。
【解決手段】単結晶AlNからなる基板を準備するステップと、前記単結晶AlNからなる基板の表面を酸素プラズマによって酸化し、単結晶AlNからなる基板上に酸化アルミニウムまたはアルミニウムオキシナイトライドからなる絶縁膜を形成するステップとを備えることを特徴とする半導体装置の製造方法。 (もっと読む)


【課題】金属膜あるいは金属酸化膜の成膜量に伴うことなく含有している金属元素の濃度分布に偏りのないゲート絶縁膜を提供する。
【解決手段】図2に示すように、半導体基板1上に、シリコン酸化膜より高い誘電率を有する高誘電体膜10を形成する高誘電体膜形成工程と、高誘電体膜10上に、第1の金属元素を有する第1の金属膜あるいは金属酸化膜20を成膜する第1の成膜工程と、高誘電体膜10に第1の金属元素を拡散させる拡散工程と、高誘電体膜10上に金属元素吸収膜50を成膜する第2の成膜工程と、金属元素吸収膜50に、第1の金属元素を含ませる吸収工程と、金属元素吸収膜60を選択的に除去する除去工程の6工程を含んでいる。 (もっと読む)


【課題】半導体基板等にダメージを与えることなくゲート絶縁膜を形成する半導体装置の製造方法を提供する。
【解決手段】半導体基板上に誘電体膜を形成する成膜工程と、前記誘電体膜を熱処理する熱処理工程と、前記誘電体膜上の一部に電極を形成する電極形成工程と、前記電極の形成されていない前記誘電体膜にイオン化したガスクラスターを照射する照射工程と、前記照射工程の後、ウェットエッチングにより、前記イオン化したガスクラスターの照射された領域における前記誘電体膜を除去するエッチング工程と、を有することを特徴とする半導体装置の製造方法を提供することにより上記課題を解決する。 (もっと読む)


【課題】オン時における電流の迅速な立ち上がりを実現し、複雑な工程を経ることなく、n型HEMTとモノリシックにインバータを構成可能な半導体装置を得る。
【解決手段】第1の極性の電荷(ホール)供給層22aと、電荷供給層22aの上方に形成されており、凹部22baを有する第2の極性の電荷(ホール)走行層22bと、電荷走行層22bの上方で凹部22baに形成されたゲート電極29とを含むp型GaNトランジスタを備える。 (もっと読む)


【課題】高電圧動作時においても電流コラプス現象を十分に抑制し、高耐圧及び高出力を実現する信頼性の高い化合物半導体装置を得る。
【解決手段】HEMTは、化合物半導体層2と、開口を有し、化合物半導体層2上を覆う保護膜と、開口を埋め込み、化合物半導体層2上に乗り上げる形状のゲート電極7とを有しており、保護膜は、酸素非含有の下層絶縁膜5と、酸素含有の上層絶縁膜6との積層構造を有しており、開口は、下層絶縁膜5に形成された第1の開口5aと、上層絶縁膜6に形成された第1の開口5aよりも幅広の第2の開口6aとが連通してなる。 (もっと読む)


【課題】半導体層と電極との間に絶縁膜を介するMIS構造を採用するも、オン抵抗の上昇及び閾値の変動を抑止し、信頼性の高い半導体装置を得る。
【解決手段】AlGaN/GaN・HEMTは、化合物半導体積層構造2と、化合物半導体積層構造2の表面と接触する挿入金属層4と、挿入金属層4上に形成されたゲート絶縁膜7と、挿入金属層4の上方でゲート絶縁膜7を介して形成されたゲート電極8とを含み構成される。 (もっと読む)


【課題】ノーマリオフ動作を実現しながら良好な伝導性能を得ることができる化合物半導体装置及びその製造方法を提供する。
【解決手段】化合物半導体装置の一態様には、基板1と、基板1上方に形成された電子走行層3及び電子供給層5と、電子供給層5上方に形成されたゲート電極11g、ソース電極11s及びドレイン電極11dと、電子供給層5とゲート電極11gとの間に形成されたp型半導体層8と、電子供給層5とp型半導体層8との間に形成され、電子供給層5よりもバンドギャップが大きい正孔障壁層6と、が設けられている。 (もっと読む)


【課題】ゲートリーク電流が低減され、かつ、ノーマリーオフ動作する半導体装置を提供する。
【解決手段】基板11の上に形成された第1の半導体層12と、第1の半導体層12の上に形成された第2の半導体層13と、第2の半導体層13の上に形成された下部絶縁膜31と、下部絶縁膜31の上に、p型の導電性を有する酸化物により形成された酸化物膜33と、酸化物膜33の上に形成された上部絶縁膜34と、上部絶縁膜34の上に形成されたゲート電極41と、を有し、ゲート電極41の直下において、下部絶縁膜31の表面には凹部が形成されている半導体装置。 (もっと読む)


【課題】電流コラプスを抑制しながらノーマリオフ動作を実現することができる化合物半導体装置及びその製造方法を提供する。
【解決手段】化合物半導体装置の一態様には、基板1と、基板1上方に形成された化合物半導体積層構造7と、化合物半導体積層構造上方に形成されたゲート電極11g、ソース電極11s及びドレイン電極11dと、が設けられている。化合物半導体積層構造7には、電子走行層3と、電子走行層3上方に形成された電子供給層5を含む窒化物半導体層と、が設けられている。窒化物半導体層の表面のIn組成は、平面視でゲート電極11gとソース電極11sとの間に位置する領域及びゲート電極11gとドレイン電極11dとの間に位置する領域において、ゲート電極11gの下方よりも低くなっている。 (もっと読む)


【課題】長期にわたって安定した動作が可能な化合物半導体装置及びその製造方法を提供する。
【解決手段】化合物半導体装置の一態様には、基板1と、基板1上方に形成された電子走行層3及び電子供給層5と、電子供給層5上方に形成されたゲート電極11g、ソース電極11s及びドレイン電極11daと、電子供給層5とゲート電極11gとの間に形成された第1のp型半導体層7aと、ソース電極11sと電子供給層5との間に形成されたp型半導体層7と、が設けられている。第2のp型半導体層7上のソース電極11sには、第1の金属膜11saと、第1の金属膜11saにゲート電極11g側で接し、第1の金属膜11saよりも抵抗が大きい第2の金属膜11sbと、が設けられている。 (もっと読む)


1 - 20 / 922