説明

Fターム[5F140BD06]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ゲート絶縁膜 (8,730) | 材料 (6,782) | SiO (1,016) | 材料 (223)

Fターム[5F140BD06]に分類される特許

1 - 20 / 223


【課題】電界が局所的に集中することを抑制して、高耐圧化した半導体装置を提供する。
【解決手段】ソース領域110は、溝部300側面の第2面32に面し、一部が面31と面32の交線と平行な方向に延在する。ドリフト領域140は、溝部300のうち面32と反対の面33に面し、一部が面31および面33の交線と平行な方向に延在して設けられ、ソース領域110よりも低濃度に形成される。ドレイン領域120は、ドリフト領域140を介し溝部300の反対側に位置し、ドリフト領域140と接するように設けられ、ドリフト領域140よりも高濃度に形成される。第1ゲート絶縁層200は、溝部300の側面のうち面32と面33に交わる方向の面である面34と接するとともに、面31上のうち少なくともチャネル領域130と接する。ゲート電極400は、第1ゲート絶縁層200上に設けられ。溝部300はドリフト領域140よりも深い。 (もっと読む)


【課題】ドーピング密度を増やすことなく、高濃度キャリア走行部を形成でき、高い移動度と低いオン抵抗を実現できる電界効果トランジスタの製造方法および電界効果トランジスタを提供する。
【解決手段】この電界効果トランジスタ1は、窒素ドープn型SiCドリフト層12のキャリア走行部14を挟むように形成されたソース13とドレイン15とを備える。ソース13とドレイン15は、エッチングによってキャリア走行部14に隣接して形成された段部16,17を有する。キャリア走行部14は、段部16,17の段差面16A,17Aに紫外光を照射することによって段部16,17から延びるように形成された積層欠陥部18を有する。積層欠陥部18は、3C‐SiCの結晶構造を持ち、量子井戸構造のようにふるまうことからキャリアがここに多数閉じ込められる。 (もっと読む)


【課題】高電子移動度トランジスタ及びその製造方法を提供する。
【解決手段】高電子移動度トランジスタ(HEMT)及びその製造方法に係り、該高電子移動度トランジスタは、基板と、基板から離隔された位置に備わった高電子移動度トランジスタ積層物と、基板と高電子移動度トランジスタ積層物との間に位置した疑似絶縁層と、を含み、該疑似絶縁層は、異なる相の少なくとも2つの物質を含む。前記異なる相の少なくとも2つの物質は、固体物質と非固体物質とを含む。前記固体物質は、半導体物質であり、前記非固体物質は、空気である。 (もっと読む)


【課題】ゲートリーク電流が低減され、かつ、ノーマリーオフ動作する半導体装置を提供する。
【解決手段】基板11の上に形成された第1の半導体層12と、第1の半導体層12の上に形成された第2の半導体層13と、第2の半導体層13の上に形成された下部絶縁膜31と、下部絶縁膜31の上に、p型の導電性を有する酸化物により形成された酸化物膜33と、酸化物膜33の上に形成された上部絶縁膜34と、上部絶縁膜34の上に形成されたゲート電極41と、を有し、ゲート電極41の直下において、下部絶縁膜31の表面には凹部が形成されている半導体装置。 (もっと読む)


【課題】トランジスタのオン電流を十分に確保することが可能な信頼性の高い半導体装置を提供する。
【解決手段】活性領域6を分断する2つの埋め込みゲート用の溝部8a,8bにゲート絶縁膜9を介して埋め込まれたゲート電極7a,7bと、2つの埋め込みゲート用の溝部8a,8bによって分断された3つの活性領域6a,6b,6cのうち、中央部に位置する活性領域6bを分断するビットコンタクト用の溝部11の両側面に、埋め込みゲート用の溝部8a,8bの底面と同程度の深さで不純物を拡散させることによって形成された第1の不純物拡散層13a,13bと、中央部を挟んだ両側に位置する活性領域6a,6cに、ゲート電極7a,7bの上面と同程度の深さで不純物を拡散させることによって形成された第2の不純物拡散層14a,14bとを備える。 (もっと読む)


【課題】バッファ層を有する半導体素子において、チャネルの基準電位を固定する半導体素子及びその製造方法を提供する。
【解決手段】基板10と、基板上に設けられ、エネルギーギャップの異なる複数種類の窒化物半導体が積層された積層体を少なくとも1層有するバッファ層20と、バッファ層上に設けられた窒化物半導体のチャネル層30と、バッファ層の側面に電気的に接続された側面電極60と、チャネル層の上方に形成され、チャネル層と電気的に接続されたチャネル電極52,56とを備える半導体素子。 (もっと読む)


【課題】トンネル型FETのオン電流とオフ電流との比と、単位基板面積あたりのオン電流を増大させる。
【解決手段】実施形態によれば、半導体装置は、半導体基板と、前記半導体基板上に絶縁膜を介して形成されたゲート電極と、前記ゲート電極の側面に形成されたゲート絶縁膜とを備える。さらに、前記装置は、前記半導体基板上に順に積層された第1導電型の下部主端子層と、中間層と、第2導電型の上部主端子層とを有し、前記ゲート絶縁膜を介して前記ゲート電極の側面に形成された積層体とを備える。さらに、前記上部主端子層は、前記ゲート電極の側面に、前記ゲート絶縁膜と半導体層を介して形成されている。 (もっと読む)


【課題】 SiO/SiC界面における界面準位自体を低減することが出来るSiC半導体を用いたMOS構造、およびその酸化膜の形成方法を提供する。
【解決手段】 SiC半導体基板1を処理炉内に用意し、処理炉内を比較的低い700℃に設定して、SiC半導体基板1の基板表面を酸素ガス雰囲気中にさらす。この熱酸化により、SiC半導体基板1の基板表面には、SiOから成る中間層2が約1nmの極薄い厚さで形成される。次に、中間層2上にSiO膜を約50nmの厚さに堆積して、SiOから成る堆積層3を形成する。次に、SiC半導体基板1が酸化しない温度および時間で、堆積層3をアニーリングする。このアニーリングは、赤外線ランプなどの急速加熱装置により、SiO膜の融点である1200℃に近い、この1200℃の融点よりも低い例えば1000〜1100℃程度の温度で、短時間に急速に行われる。 (もっと読む)


【課題】プラズマ酸化によりシリコン基板上に形成される酸化膜の金属汚染量を低減すること。
【解決手段】酸化膜の形成方法は、不活性ガスと、前記不活性ガスに対する混合割合が0よりも大きく且つ0.007以下である酸化ガスと、を含む混合ガスからプラズマを生成する工程と、前記プラズマを用いてシリコン基板の表面に酸化膜を形成する工程と、を含む。 (もっと読む)


【課題】高性能なIII−V族MISFETの実現を可能にする、より効果的なIII−V族化合物半導体表面のパッシベーション技術を提供する。
【解決手段】エピタキシャル成長により化合物半導体層をベース基板上に形成するステップと、前記化合物半導体層の表面をセレン化合物を含む洗浄液で洗浄するステップと、前記化合物半導体層の上に絶縁層を形成するステップと、を有する半導体基板の製造方法を提供する。前記セレン化合物として、セレン酸化物が挙げられる。前記セレン酸化物として、HSeOが挙げられる。前記洗浄液が、水、アンモニアおよびエタノールからなる群から選択された1以上の物質をさらに含んでもよい。前記化合物半導体層の表面がInGa1−xAs(0≦x≦1)からなる場合、前記絶縁層がAlからなるものであることが好ましく、Alは、ALD法により形成されることが好ましい。 (もっと読む)


【課題】オン抵抗が低く、かつ、Vth(閾値電圧)が高い窒化物半導体装置の提供。
【解決手段】アクセプタになるアクセプタ元素を含み、窒化物半導体で形成されたバックバリア層106と、バックバリア層106上に窒化物半導体で形成されたチャネル層108と、チャネル層108の上方に、チャネル層よりバンドギャップが大きい窒化物半導体で形成された電子供給層112と、チャネル層108と電気的に接続された第1主電極116、118と、チャネル層108の上方に形成された制御電極120と、を備え、バックバリア層106は、制御電極120の下側の領域の少なくとも一部に、アクセプタの濃度がバックバリア層の他の一部の領域より高い高アクセプタ領域126を有する窒化物半導体装置100。 (もっと読む)


【課題】ゲート電極のドレイン端の電界を緩和し、ゲート絶縁膜の破損を低減する。
【解決手段】窒化物半導体で形成されたチャネル層108と、チャネル層108の上方に、チャネル層よりバンドギャップエネルギーが大きい窒化物半導体で形成された電子供給層112と、チャネル層108の上方に形成されたソース電極116およびドレイン電極118と、チャネル層108の上方に形成されたゲート電極120と、チャネル層108の上方に形成され、チャネル層108からホールを引き抜くホール引抜部126と、ゲート電極120およびホール引抜部126を、電気的に接続する接続部124と、を備える電界効果型トランジスタ100。 (もっと読む)


【課題】質量密度の高い絶縁膜の製造方法を提案すること。
【解決手段】絶縁膜の製造方法は、基板の上に絶縁膜を形成するステップと、その絶縁膜を処理するステップとを備えている。絶縁膜は、SiとOとを含んでおり、たとえばSiO2膜である。第2のステップでは、絶縁膜の温度を551℃以上574℃以下として、活性状態の希ガスと活性状態の酸素とを絶縁膜に供給する。 (もっと読む)


【課題】 エッチングによるダメージを抑制しながら、ヘテロ接合面の近傍に負イオンを導入する技術を提供する。
【解決手段】 導入領域8上に保護膜30を形成する保護膜形成工程と、保護膜形成工程の後に、導入領域8を負イオンを含むプラズマに曝すプラズマ工程を備えている。保護膜30は、プラズマに対するエッチング速度が導入領域8よりも小さい。保護膜30には、負イオンを通過させることが可能な材料が用いられている。プラズマ中の負イオンは、保護膜30を通過し、導入領域8に導入される。 (もっと読む)


【課題】大電流かつ高耐圧な窒化物系半導体デバイスを提供する。
【解決手段】基板10と、基板10の上方に形成された電子走行層30と、電子走行層30上に形成された、電子走行層30とバンドギャップエネルギーの異なる電子供給層40と、電子供給層40上に形成されたドレイン電極80と、ドレイン電極80に流れる電流を制御するゲート電極70と、ゲート電極70をはさんでドレイン電極80の反対側に形成されたソース電極90とを備え、ゲート電極70とドレイン電極80との間の電子走行層30の表面には、2次元電子ガスの濃度が他の領域より低い複数の低濃度領域32が、互いに離れて形成されている、窒化物系半導体デバイス100。 (もっと読む)


【課題】ターンオン防止付き複合半導体デバイスを提供する。
【解決手段】本明細書は、ターンオン防止制御を有する複合III-窒化物半導体デバイスの種々の実現を開示する。1つの好適な実現では、ノーマリオフ複合半導体デバイスが、ノーマリオンIII-窒化物パワートランジスタ、及びこのノーマリオンIII-窒化物パワートランジスタとカスコード接続された低電圧(LV)デバイスを具えて、ノーマリオフ複合半導体デバイスを形成する。このLVデバイスは、ノイズを伴う環境内で、ノイズ電流が、ノーマリオンIII-窒化物パワートランジスタのチャネルを通って流れることを防止することによって、ノーマリオフ複合半導体デバイスに、ターンオン防止制御を与えるように構成されている。 (もっと読む)


【課題】シリコンカーバイド領域を含む半導体基板上に形成された金属-絶縁膜-半導体構造を有する半導体装置(電界効果型トランジスタ(MISあるいはMOSFET))に対して、高温に加熱された熱触媒体表面での重水素を含んだガスの熱触媒作用によって生成された活性化した重水素を用いることにより、600°C以下の低温においてゲート絶縁膜/シリコンカーバイド半導体界面近傍に存在するダングリングボンドの重水素終端を図り、界面準位密度の低い良好なゲート酸化膜/半導体界面が形成された半導体装置、およびそれを形成する重水素処理装置およびその作製方法を提供する。
【解決手段】半導体基板とゲート絶縁膜、層間絶縁膜、配線層、保護絶縁膜等の半導体装置に形成される膜又は層の界面近傍での重水素元素濃度が1x1019cm-3以上であることを特徴とする金属−絶縁膜−半導体(MIS)構造を有する半導体装置。 (もっと読む)


【課題】良好なノーマリ・オフ動作を可能とすることに加え、アバランシェ耐量が大きく、外部のダイオードを接続することを要せず、確実に安定動作を得ることができる信頼性の高い高耐圧のHEMTを得る。
【解決手段】化合物半導体積層構造2に形成された電極用リセス2Cを、ゲート絶縁膜6を介して電極材料で埋め込むようにゲート電極7を形成すると共に、化合物半導体積層構造2に形成された電極用リセス2Dを、少なくとも電極用リセス2Dの底面で化合物半導体積層構造2と直接的に接するように電極材料で埋め込み、化合物半導体積層構造2とショットキー接触するフィールドプレート電極8を形成する。 (もっと読む)


【課題】工程増を最小限とした簡便な手法で、素子形成領域における化合物半導体と同時に、しかもその結晶性を損なうことなく確実な素子分離を実現し、信頼性の高い化合物半導体装置を実現する。
【解決手段】Si基板1上の素子分離領域に初期層3を選択的に形成し、初期層3上を含むSi基板1上の全面に化合物半導体の積層構造4を形成して、積層構造4は、素子分離領域では初期層3と共に素子分離構造4Bとなり、素子形成領域ではソース電極5、ドレイン電極6及びゲート電極7が形成される素子形成層4Aとなる。 (もっと読む)


【課題】半導体装置の特性を向上させる。
【解決手段】LDMOSと、LDMOSのソース領域と電気的に接続されるソースプラグP1Sと、ソースプラグP1S上に配置されるソース配線M1Sと、LDMOSのドレイン領域と電気的に接続されるドレインプラグP1Dと、ドレインプラグP1D上に配置されるドレイン配線M1Dと、を有する半導体装置のソースプラグP1Sの構成を工夫する。ドレインプラグP1Dは、Y方向に延在するライン状に配置され、ソースプラグP1Sは、Y方向に所定の間隔を置いて配置された複数の分割ソースプラグP1Sを有するように半導体装置を構成する。このように、ソースプラグP1Sを分割することにより、ソースプラグP1SとドレインプラグP1D等との対向面積が低減し、寄生容量の低減を図ることができる。 (もっと読む)


1 - 20 / 223