説明

Fターム[5F140BF23]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ゲート電極 (19,255) | 3層目より上層の材料 (915)

Fターム[5F140BF23]の下位に属するFターム

半導体 (140)
金属 (751)

Fターム[5F140BF23]に分類される特許

1 - 20 / 24


【課題】多結晶シリコン膜との接触に起因するショットキー抵抗を低減する。
【解決手段】半導体装置は、トランジスタを備える。トランジスタは、第1の活性領域の表面の一部を覆い二酸化シリコンよりも高い誘電率を有する第1の絶縁材料からなる第1のゲート絶縁膜と、第1のゲート絶縁膜上に形成された第1の金属材料からなる第1の金属ゲート電極と、第1の金属ゲート電極上に形成されたp型導電型の第1の多結晶シリコン膜を有する。 (もっと読む)


【課題】王水を用いることなくニッケルプラチナ膜の未反応部分を選択的に除去しうるとともに、プラチナの残滓が半導体基板上に付着するのを防止しうる半導体装置の製造方法を提供する。
【解決手段】シリコン基板10上に、ゲート電極16と、ゲート電極16の両側のシリコン基板10内に形成されたソース/ドレイン拡散層24とを有するMOSトランジスタ26を形成し、シリコン基板10上に、ゲート電極16及びソース/ドレイン拡散層24を覆うようにNiPt膜28を形成し、熱処理を行うことにより、NiPt膜28とソース/ドレイン拡散層24の上部とを反応させ、ソース/ドレイン拡散層24上に、Ni(Pt)Si膜34a、34bを形成し、過酸化水素を含む71℃以上の薬液を用いて、NiPt膜28のうちの未反応の部分を選択的に除去するとともに、Ni(Pt)Si膜34a、34bの表面に酸化膜を形成する。 (もっと読む)


【課題】半導体処理の方法が提供される。
【解決手段】いくつかの実施形態によれば、高い有効仕事関数を有する電極が形成される。この電極は、トランジスタのゲート電極であってもよく、導電材料の第1の層を堆積し、第1の層を水素含有ガスに露出し、第1の層に導電材料の第2の層を堆積することにより、high−kゲート誘電体に形成されてもよい。第1の層は、基板がプラズマ又はプラズマ発生ラジカルに露出されないプラズマ無しプロセス(non−plasma process)を用いて堆積される。第1の層が露出される水素含有ガスは、励起された水素種を含んでもよく、これは水素含有プラズマの一つであってもよく、水素含有ラジカルであってもよい。第2の層を堆積する前に、第1の層もまた、酸素に露出されてもよい。ゲートスタックのゲート電極の仕事関数は、いくつかの実施形態において約5eV又はそれ以上であってもよい。 (もっと読む)


【課題】王水を用いることなくニッケルプラチナ膜の未反応部分を選択的に除去しうるとともに、プラチナの残滓が半導体基板上に付着するのを防止しうる半導体装置の製造方法を提供する。
【解決手段】シリコン基板10上に、ゲート電極16と、ゲート電極16の両側のシリコン基板10内に形成されたソース/ドレイン拡散層24とを有するMOSトランジスタ26を形成し、シリコン基板10上に、ゲート電極16及びソース/ドレイン拡散層24を覆うようにNiPt膜28を形成し、熱処理を行うことにより、NiPt膜28とソース/ドレイン拡散層24の上部とを反応させ、ソース/ドレイン拡散層24上に、Ni(Pt)Si膜34a、34bを形成し、過酸化水素を含む71℃以上の薬液を用いて、NiPt膜28のうちの未反応の部分を選択的に除去するとともに、Ni(Pt)Si膜34a、34bの表面に酸化膜を形成する。 (もっと読む)


【課題】ゲート部におけるリーク電流が低減できる反面、プロセス上の制約があるため製造が困難で、ゲートリーク電流を安定して低減させることが困難だった。
【解決手段】基板と、前記基板上に形成され且つ二次元キャリアガスを有する半導体機能層と、前記半導体機能層上において互いに離間して形成される第1及び第2の主電極と、前記半導体機能層上における前記第1及び第2の主電極間に形成される制御電極と、前記半導体機能層と前記制御電極との間に形成される金属酸化膜と、を備え、
前記金属酸化膜と前記半導体機能層との接合界面における結晶格子は不連続であることを特徴とする半導体装置。 (もっと読む)


【課題】Geをチャネル材料に用いても、素子特性の劣化を抑制することを可能にする。
【解決手段】Geを含むp型半導体領域上にゲート絶縁膜を形成する工程と、前記ゲート絶縁膜上にゲート電極を形成する工程と、前記半導体領域の、前記ゲート電極の両側に位置する第1および第2領域に、有機金属錯体および酸化剤を交互に供給して金属酸化物を堆積する工程と、前記金属酸化物の上に金属膜を堆積する工程と、熱処理を行うことにより、前記半導体領域および前記金属酸化物と、前記金属膜とを反応させて前記第1および第2領域に金属半導体化合物層を形成するとともに前記金属半導体化合物層と前記半導体領域との界面に金属偏析層を形成する工程と、を備えている。 (もっと読む)


【課題】金属電極と該金属電極の上に形成されたシリコン電極とを有するゲート電極を備えた電界効果型トランジスタを実現する際に、金属電極とシリコン電極との界面に生じる界面抵抗を低減できるようにする。
【解決手段】半導体装置は、半導体基板100における第1の活性領域103aに形成されたP型の電界効果型トランジスタを備えている。第1の電界効果型トランジスタは、第1の活性領域103aの上に形成された第1のゲート絶縁膜106aと、第1のゲート絶縁膜106aの上に形成された第1のゲート電極115aとを有している。第1のゲート電極115aは、第1のゲート絶縁膜106aの上に形成された第1の金属電極107aと、該第1の金属電極107aの上に形成された第1の界面層110aと、該第1の界面層110aの上に形成された第1のシリコン電極111aとを有している。 (もっと読む)


【課題】高品質な半導体装置及びその製造方法を提供する。
【解決手段】半導体装置は、基板と、基板上に形成される半導体領域、半導体領域内に形成され、互いに分離されているソース領域及びドレイン領域、半導体領域内に形成され、ソース領域及びドレイン領域を分離するチャネル領域、チャネル領域上に形成され、1×1019atoms/cmよりも大きいピーク濃度で、Si、O、またはNとは異なる少なくとも一つの要素を有する界面酸化層、及び界面酸化層上に形成され、実質的に界面酸化層に隣接する深さでhigh―k/界面酸化層接合面を有するhigh―k絶縁層を有するMOS(metal-oxide-semiconductor)トランジスタを備え、少なくとも一つの要素のピーク濃度の少なくとも一つの深さは、実質的にhigh―k/界面酸化層接合面よりも下に位置する。 (もっと読む)


【課題】接合リーク電流が低減されるとともに、セル容量への書き込み・読み出しに十分な電流駆動能力を確保することが可能な半導体装置及びその製造方法を提供する。
【解決手段】半導体基板1に形成された複数の埋め込みゲート型MOSトランジスタ2を有し、半導体基板1には素子分離領域と活性領域とが形成されており、ゲートトレンチの内部に形成され、少なくとも一部がワード線として設けられるとともに、その他の残部が、活性領域を複数の素子領域に分離する素子分離として設けられる埋め込みゲート電極31A、31Bと、ソース・ドレイン拡散層15、45とが備えられ、埋め込みゲート電極31A、31Bは、上部電極31aと下部電極31bとの積層構造とされ、且つ、半導体基板1の上面側のソース・ドレイン拡散層15、45側に配置される上部電極31aが、下部電極31bに比べて、仕事関数の低いゲート材料からなる。 (もっと読む)


【課題】高誘電率ゲート絶縁膜およびメタルゲート電極を備えたCMISFETの性能を向上させる。
【解決手段】高誘電率ゲート絶縁膜として機能するHf含有絶縁膜4a,4b上にメタルゲート電極であるゲート電極GE1,GE2が形成され、ゲート電極GE1,GE2は、金属膜7a,7b,7cの積層膜からなる金属膜7とその上のシリコン膜8との積層構造を有している。金属膜7の最下層の金属膜7aは、窒化チタン膜、窒化タンタル膜、窒化タングステン膜、炭化チタン膜、炭化タンタル膜または窒化タングステン膜からなり、金属膜7bは、ハフニウム膜、ジルコニウム膜またはアルミニウム膜からなり、金属膜7cは、金属膜7aと同種の材料からなる膜である。 (もっと読む)


【課題】CMOS集積過程での高温処理の後であっても一定の閾値電圧を維持する高kゲート誘電体の提供。
【解決手段】高kゲート誘電体30と、下部金属層40、捕捉金属層50、および上部金属層60を含む金属ゲート構造とのスタックを提供する。該捕捉金属層は、次の2つの基準、1)Si+2/yM→2x/yM+SiOの反応によるギブス自由エネルギの変化が正である金属(M)であること、2)酸化物形成に対する酸素原子あたりのギブス自由エネルギが、下部金属層の金属および上部金属層の金属より大きな負である金属であること、を満たす。これらの基準を満たす捕捉金属層は、酸素原子がゲート電極を通って高kゲート誘電体に向け拡散するときに該酸素原子を捕捉する。さらに、該捕捉金属層は、高kゲート誘電体の下の酸化ケイ素界面層の厚さを遠隔から低減する。この結果、ゲート誘電体全体の等価酸化膜厚(EOT)の変動が抑制される。 (もっと読む)


【課題】ゲート電極中のシリコン混晶層の形成を制御することにより、キャップ膜の形成を不要とし、シリサイド層を精度良く形成する。
【解決手段】第1導電型の半導体領域10x上に形成されたゲート絶縁膜13と、ゲート絶縁膜13上に形成され、第2導電型のポリシリコン膜28Aとポリシリコン膜28A上に形成された炭素を含む第1のシリコン混晶層25とを有するゲート電極25Aと、第1のシリコン混晶層25上に形成された第1のシリサイド層29と、半導体領域10xにおけるゲート電極25Aの側方下の領域に形成された第2導電型の不純物拡散領域24と、不純物拡散領域24の上部領域に形成された炭素を含む第2のシリコン混晶層26と、第2のシリコン混晶層26上に形成された第2のシリサイド層30とを備えている。 (もっと読む)


【課題】ゲート金属起因の閾値変調効果が制御されたCMISFETを提供する。
【解決手段】半導体基板上に設けられたCMISFETにおいて、pMISFETのゲート電極は、第1のゲート絶縁膜上に形成された第1の金属層と、その上に形成されたIIA族及びIIIA族に属する少なくとも1つの金属元素を含む第1の上部金属層とを具備し、nMISFETのゲート電極は、第2のゲート絶縁膜上に形成された第2の金属層と、第2の金属層上に形成され、前記第1の上部金属層と実質的に同一組成の第2の上部金属層とを具備し、第1の金属層が第2の金属層よりも厚く、第1及び第2のゲート絶縁膜は前記金属元素を含み、第1のゲート絶縁膜に含まれる前記金属元素の原子密度が、第2のゲート絶縁膜に含まれる前記金属元素の原子密度よりも低い。 (もっと読む)


【課題】簡単化した集積機構を備えた二重仕事関数半導体デバイスおよびその製造方法を提供する。
【解決手段】二重仕事関数半導体デバイスは、第1実効仕事関数を有する第1ゲートスタック111を含む第1トランジスタと、第1実効仕事関数とは異なる第2実効仕事関数を有する第2ゲートスタック112を含む第2トランジスタとを備える。第1ゲートスタック111は、第1ゲート誘電体キャップ層104、ゲート誘電体ホスト層105、第1金属ゲート電極層106、バリア金属ゲート電極層107、第2ゲート誘電体キャップ層108、第2金属ゲート電極層109を含む。第2ゲートスタック112は、ゲート誘電体ホスト層105、第1金属ゲート電極層106、第2ゲート誘電体キャップ層108、第2金属ゲート電極層109を含む。第2金属ゲート電極層109は、第1金属ゲート電極層106と同じ金属組成からなる。 (もっと読む)


【課題】半導体装置の動作を安定化できる。
【解決手段】本発明の例に関わる半導体は、半導体基板1と、半導体基板1内に設けられる2つの拡散層7と、2つの拡散層7間のチャネル領域上に設けられるゲート絶縁膜2と、ゲート絶縁膜2上に設けられる複数の導電膜3A,3B,4Aと複数の絶縁膜5A,5B,5Cとが積層された積層体6と積層体6上に設けられるシリサイド層4Bとからなるゲート電極10と、を具備し、積層体6のうち、シリサイド層4Bとは異なる構成の導電膜3Aが、ゲート絶縁膜2と接触することを特徴とする半導体装置。 (もっと読む)


【課題】 高誘電率ゲート絶縁膜とメタルゲート電極を用いたメタルゲートCMOSの製造方法を簡略化する。
【解決手段】 高誘電率ゲート絶縁膜6上にシリコン膜7を形成し、PMOS領域のシリコン膜7のみを選択的に窒化してSiN膜9に置換する。そしてNMOS領域上のシリコン膜7及びPMOS領域上のSiN膜9上にキャップ膜としてのLa(O)膜11及びメタル電極のW膜12を形成した後、加熱処理して、La(O)膜11のLa元素をNMOS領域の高誘電率ゲート絶縁膜に拡散させる。この際、PMOS領域においては、SiN膜9によりLa元素の拡散をブロックする。これにより、NMOSFETとPMOSFETの作りわけを容易に行える。また、窒化されやすい高誘電率ゲート絶縁膜6であれば、シリコン膜7を省略して、窒化処理によりPMOS領域の高誘電率ゲート絶縁膜6だけを選択的に窒化してもよい。 (もっと読む)


【課題】低い閾値電圧のnチャネル型MISトランジスタを含む半導体装置を実現する。
【解決手段】半導体装置は、半導体基板と、半導体基板の主面に形成されたn型半導体領域とp型半導体領域と、半導体基板上に形成され、n型半導体領域とp型半導体領域を露出するように形成された第1と第2のトレンチを有する第1の絶縁層と、第1と第2のトレンチの側壁と底部に沿って形成されたゲート絶縁膜と、第1のトレンチの側壁と底部に沿って形成されゲート絶縁膜を介して内張りされた第1の金属層と、第2のトレンチの側壁と底部に沿って形成されゲート絶縁膜を介して1モノレイヤー以上で1.5nm以下の厚さに内張りされた第2の金属層と、第2の金属層上に内張りされたアルカリ土類金属元素、III族金属元素の単体、窒化物、炭化物、酸化物の内の少なくとも1つの金属元素を含む第3の金属層と、第1と第2のソース/ドレイン領域を具備することを特徴とする。 (もっと読む)


【課題】FinFETにおいて、従来のFinFETの構造に比してさらにチャネルに応力を印加することができる半導体装置を提供すること。
【解決手段】Si基板1と、フィン11、フィン11の延在方向に平行な面上にゲート絶縁膜13を介して形成される所定の幅のゲート電極14、およびフィン11の延在方向に平行な面上のゲート電極14の両側に形成されるソース/ドレイン領域を含むFinFET10n,10pと、を備え、ゲート電極14上に形成され、応力印加層31,32の形成温度と室温での線膨張係数の差が、フィン11の形成温度と室温での線膨張係数の差と異なる導電性材料によって形成される応力印加層31,32と、応力印加層31,32上に形成され、フィン11よりもヤング率の大きい導電性材料からなるプラグ層33,34と、を備える。 (もっと読む)


【課題】金属シリサイド膜の膜厚が薄くなってきたり、拡散層幅が小さくなってくると、拡散層上の金属シリサイドが凝集反応を起こしやすくなる、という問題があった。
【解決手段】半導体装置100は、半導体基板2と、半導体基板内に設けられた拡散層4と、半導体基板上に設けられたゲート絶縁膜12と、ゲート絶縁膜上に設けられたゲート電極14と、拡散層上に選択的に設けられたNiシリサイド層8と、を含み、Niシリサイド層8上にはCoを主成分とするメタルキャップ膜18が選択的に設けられている。 (もっと読む)


【課題】厚いゲート絶縁膜を形成することに起因する不具合を生じさせることなく、高耐圧デバイスにも適用可能なMOSトランジスタを備えた半導体装置を提供する。
【解決手段】ドレイン領域はN−ドレイン領域3dとN+ドレイン領域11dからなる二重拡散構造を備えている。ゲート電極は、ゲート絶縁膜7上に形成された第1ゲート電極9と、第1ゲート電極上9にゲート電極間絶縁膜11を介して形成された第2ゲート電極13とからなる。第2ゲート電極13にゲート配線13gが接続され、第1ゲート電極9にはゲート配線13gは接続されていない。ゲート絶縁膜7とN+ソース領域11sの間の半導体基板1表面にフィールド絶縁膜15配置されている。第1ゲート電極9のドレイン領域側の端部はフィールド絶縁膜15上に配置されている。第2ゲート電極13に印加されるゲート電圧はゲート絶縁膜7とゲート電極間絶縁膜11で分割される。 (もっと読む)


1 - 20 / 24