説明

Fターム[5F140BG02]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ゲート電極及び側壁の製造 (21,161) | ダミーゲートを用いたゲート電極の製造 (506) | ダミーゲート材料(レジスト、ポリイミド) (470)

Fターム[5F140BG02]の下位に属するFターム

無機物 (413)

Fターム[5F140BG02]に分類される特許

1 - 20 / 57




【課題】注入した導電性不純物により形成される結晶欠陥の密度を低減し、歩留まり率が向上するような半導体装置の製造方法を提供する。
【解決手段】本発明の実施形態にかかる半導体装置の製造方法は、半導体基板を加熱することにより、半導体基板の基板温度を200から500℃の間の所望の温度に維持すると同時に、半導体基板に導電性不純物をイオン注入法もしくはプラズマドーピング法を用いてドーピングし、ドーピングした導電性不純物を活性化させるための活性化処理を行う。 (もっと読む)


【課題】n型MOSトランジスタ及びp型MOSトランジスタのそれぞれに共通のゲート電極材料を用い、且つそれぞれの閾値電圧が適切な値に調整された半導体装置を実現できるようにする。
【解決手段】半導体装置は、第1トランジスタ11及び第2トランジスタ12を備えている。第1トランジスタ11は、第1ゲート絶縁膜131と、第1ゲート電極133とを有し、第2トランジスタ12は、第2ゲート絶縁膜132と、第2ゲート電極134とを有している。第1ゲート絶縁膜131及び第2ゲート絶縁膜132は、第1絶縁層151及び第2絶縁層152を含む。第1ゲート電極133及び第2ゲート電極134は、断面凹形の第1導電層155及び該第1導電層155の上に形成された第2導電層156を含む。第1絶縁層151及び第2絶縁層152は平板状であり、第1ゲート絶縁膜131は、仕事関数調整用の第1元素を含んでいる。 (もっと読む)


【課題】半導体装置の性能を向上させる。
【解決手段】nチャネル型MISFET用のメタルゲート電極であるゲート電極GE1とpチャネル型MISFET用のダミーゲート電極GE2とを形成してから、nチャネル型MISFET用のソース・ドレイン領域とpチャネル型MISFET用のソース・ドレイン領域をそれぞれ形成する。その後、ダミーゲート電極GE2を除去し、ダミーゲート電極GE2が除去されたことで形成された凹部にpチャネル型MISFET用のメタルゲート電極を形成する。 (もっと読む)


【課題】メタルゲートプロセスにおけるプリメタル層間絶縁膜の平坦性を向上できるようにする。
【解決手段】まず、半導体基板1の上に、ゲート絶縁膜3を介在させてゲート電極4を形成する。その後、半導体基板1にゲート電極4をマスクとしてソース・ドレイン領域を形成する。続いて、ゲート電極4を覆うように半導体基板1上の全面に第1の酸化シリコン膜10を形成する。その後、ゲート電極4をストップ膜とするCMP法により、第1の酸化シリコン膜10を平坦化する。続いて、ゲート電極4を含む第1の酸化シリコン膜10の上に、第2の酸化シリコン膜11を形成する。その後、ゲート電極4をストップ膜とするCMP法により、第2の酸化シリコン膜10を平坦化する。さらに、ゲート電極4を含む第2の酸化シリコン膜10の上に、第3の酸化シリコン膜12を形成する。 (もっと読む)


【課題】CMOS回路を構成するnチャネルMISFETとpチャネルMISFETの両者において、キャリア移動度を高めて高い性能を実現する半導体装置を提供する。
【解決手段】半導体基板の第1領域及び第2領域において第1ゲート絶縁膜及び第1ゲート電極(16,17)を形成し、第1ゲート電極の両側部における半導体基板中にソースドレイン領域を形成し、ソースドレイン領域の導電性不純物を活性化し、第1ゲート電極を被覆して全面に半導体基板に応力を印加するストレスライナー膜(27,28)を形成し、少なくとも第1領域に形成された部分のストレスライナー膜は残しながら第2領域における第1ゲート電極の上部部分のストレスライナー膜を除去し、第2領域における第1ゲート電極の上部を露出させて第1ゲート電極を全て除去して第2ゲート電極形成用溝Tを形成し、第2ゲート電極形成用溝内に第2ゲート電極(31,32)を形成する。 (もっと読む)


【課題】チャネル移動度のような電気的特性の優れた半導体装置およびその製造方法を提供する。
【解決手段】半導体装置1は、<01−10>方向における(0−33−8)面に対するオフ角が−3°以上+5°以下である主表面2Aを有し、炭化珪素からなる基板2と、基板2の主表面2A上にエピタキシャル成長により形成され、炭化珪素からなるp型層4と、p型層4の表面に接触するように形成された酸化膜8とを備えている。そして、p型層4と酸化膜8との界面から10nm以内の領域における窒素原子濃度の最大値は1×1021cm−3以上となっている。 (もっと読む)


【課題】GaN系半導体/ゲート絶縁膜の界面特性、及び、ゲート絶縁膜の膜質が共に良好である半導体トランジスタを提供する。
【解決手段】半導体トランジスタ11は、GaN系の半導体から成る活性層3と、活性層3上に形成されたゲート絶縁膜とを備える。ゲート絶縁膜は、活性層3上に形成され、Al,HfO,ZrO,La,Yから成る群から選択された1つ以上の化合物を含む第1の絶縁膜6と、第1の絶縁膜6上に形成され、SiOから成る第2の絶縁膜7とを有する。 (もっと読む)


【課題】特性を十分に向上することができる半導体装置の製造方法を提供する。
【解決手段】半導体装置の製造方法は、SiC膜11を形成する工程と、このSiC膜11の表面にSiを供給した状態で、このSiC膜11を熱処理する熱処理工程と、熱処理工程によってSiC膜11の表面に得られたファセットをチャネル16とする工程とを備えている。このようにすれば、Siを供給した状態でSiC膜11を熱処理することにより、SiC膜11をエネルギ的に安定な表面状態に再構成させることができる。その結果、一周期が100nm以上のファセットが得られ、ファセットの平坦部分の長さを従来に比べて長くすることができる。したがって、界面準位の密度を減少することによりキャリアの移動度を向上することができ、半導体装置の特性を十分に向上することができる。 (もっと読む)


【課題】 置換ゲート工程で発生する不良を防止できる半導体装置の製造方法を提供する。
【解決手段】本発明による半導体装置の製造方法は、半導体基板上にゲート絶縁膜および犠牲ゲート電極を含むゲートパターンを形成する段階、前記半導体基板および前記ゲートパターン上にエッチング停止層および絶縁層を形成する段階、前記エッチング停止層が露出するまで前記絶縁層を除去する段階、前記犠牲ゲート電極が露出するまで前記エッチング停止層をエッチバックする段階、前記犠牲ゲート電極を除去し、結果物の全体構造の上面に金属層を形成する段階、前記絶縁層が露出するまで前記金属層を除去する段階、および前記金属層を所定の深さでエッチバックする段階を含む。 (もっと読む)


低寄生抵抗であるチャネル歪みされたマルチゲートトランジスタとその製造方法に係る。ゲートを連結したチャネル側壁の高さがHsiである半導体フィンのチャネル領域の上にゲートスタックを形成されてよく、ゲートスタックに隣接する半導体フィンのソース/ドレイン領域内に、エッチングレートを制御するドーパントを注入してよい。ドーピングされたフィン領域をエッチングして、半導体フィンの、略Hsiに等しい厚みを除去して、ゲートスタックの一部の下にある半導体基板の部分を露呈させるソース/ドレイン延長キャビティを形成してよい。露呈した半導体基板の上に材料を成長させて、再成長したソース/ドレイン・フィン領域を形成して、ソース/ドレイン延長キャビティを充填して、ゲートスタックからの長さを、チャネルの長さに実質的に平行な方向に離れる方向に延ばしてよい。 (もっと読む)


【課題】 金属膜やHigh−k膜の膜質の劣化を抑制できる半導体装置の製造方法を提供すること。
【解決手段】 第1の薄膜2上に、第1の薄膜2とは異なる第2の薄膜3を形成し、第2の薄膜3上に、第2の薄膜3とは異なる膜からなる犠牲膜5を形成し、犠牲膜5をエッチングにより所望の間隔を持つパターンに加工し、犠牲膜パターンを形成し、シリコン含有プリカーサー、酸素含有ガスを基板上に間欠的に供給して、犠牲膜パターンにシリコン酸化膜6を被覆し、シリコン酸化膜6をエッチングにより犠牲膜5の側壁上に側壁スペーサー6aを形成し、犠牲膜5を除去し、側壁スペーサー6aをマスクとして用いて第1の薄膜2および第2の薄膜3を加工する。 (もっと読む)


【課題】ダメージを生じさせることなく、安価かつ短時間に犠牲層を除去する犠牲層プロセスを採用し、量産性を向上させる可動ゲート型電界効果トランジスタの製造方法を提供する。
【解決手段】第1犠牲層15と、第2犠牲層16と、を有する複合犠牲層の上に可動ゲートが形成される可動ゲート形成工程と、第2犠牲層16がエッチング除去される第2犠牲層除去工程と、第1犠牲層15がエッチング除去される第1犠牲層除去工程と、を備える可動ゲート型電界効果トランジスタの製造方法とした。 (もっと読む)


【課題】熱的安定性がある一方、密着性が悪くならない程度の仕事関数を有する金属膜または金属化合物よりなる膜をゲート電極として使用した場合に、しきい値電圧を低く抑制できる半導体装置を提供する。
【解決手段】n型MIS素子とp型MIS素子を備えるCMIS素子において、n型MIS素子には、ハフニウムアルミネート膜よりなるゲート絶縁膜9上にケイ窒化タンタル膜よりなるゲート電極10を形成する。一方、p型MIS素子には、ハフニウムアルミネート膜よりなるゲート絶縁膜9上に、酸化アルミニウム膜よりなるしきい値調整膜7を形成する。そして、このしきい値調整膜7上に、ケイ窒化タンタル膜よりなるゲート電極11を形成する。 (もっと読む)


【課題】熱的および化学的に安定な酸化ゲルマニウムの製造方法を提供する。
【解決手段】p型Geからなる基板1は、純水および0.1%HFによって洗浄され、その後、超純水によってリンスされる(工程(a)参照)。その後、基板1は、33%の過酸化水素水3に、60秒間、浸漬される(工程(b)参照)。これによって、酸化ゲルマニウム膜4が基板1の一主面に形成される。 (もっと読む)


【課題】金属ゲートを形成した後に形成される絶縁膜中の水素の影響を抑制して、しきい値電圧Vthを所望の値(例えば0.3V)以下にすることを可能にする。
【解決手段】半導体基板11上に第1絶縁膜41が形成され、第1絶縁膜41に溝部42が形成され、溝部42の第1絶縁膜41側の半導体基板11上にサイドウォールスペーサ31が形成され、溝部42内にゲート絶縁膜21を介してゲート電極22が形成され、ゲート電極22の両側の半導体基板11にエクステンション領域23,24を介してソース・ドレイン領域25,26が形成され、第1絶縁膜41上にゲート電極22上を被覆する第2絶縁膜43を有し、サイドウォールスペーサ31は水素の通過を阻止する絶縁膜からなり、ゲート電極22上に水素の通過を阻止する水素バリア膜33が形成され、水素バリア膜33はゲート電極22上の周囲でサイドウォールスペーサ31と接続されている。 (もっと読む)


【課題】半導体装置の動作不良を防止し、半導体装置の製造工程を簡略化する。
【解決手段】本発明の例に関わる半導体装置は、半導体基板1と、半導体基板1内に設けられる一対の不純物拡散層2A,2Bと、不純物拡散層2A,2B間の半導体基板上に設けられるゲート絶縁膜3と、ゲート絶縁膜3上に設けられるゲート電極4と、一対の不純物拡散層2A,2B上にそれぞれ設けられる2つのコンタクト5A,5Bとを具備し、ゲート電極4とコンタクト5A,5Bは、同じ材料から構成され、ゲート電極4上端およびコンタクト5A,5B上端は、半導体基板1表面からの高さが一致する。 (もっと読む)


【課題】デバイスの性能や信頼性を低下させることなく、注入した不純物を活性化することができるIII族半導体材料電界効果トランジスタの製造方法を提供すること。
【解決手段】本発明にかかる電界効果トランジスタの製造方法は、基板やサンプルステージ等を加熱しこれらの熱伝導を用いて半導体層を昇温することによって不純物を活性化させるのではなく、キャリア移動層を形成するGaN層103のバンドギャップエネルギーよりも高いエネルギーを有する波長の紫外線レーザ光Lを照射することによって電界効果トランジスタの構成層に含まれる不純物を活性化させるため、デバイスの性能や信頼性を低下させることなく、注入した不純物を活性化することができる。 (もっと読む)


【課題】高耐圧で微小化容易なMOSトランジスタをより簡略化した工程で作製できる半導体装置の製造方法を提供すること。
【解決手段】半導体基板の第1導電型層表面にゲート絶縁膜を形成する工程、導電層形成予定領域近傍の両側に位置する第1導電型層に、第2導電型の不純物を注入し低濃度拡散層を形成する工程、不純物が注入されなかった第1導電型層表面および当該第1導電型層に隣接する一対の低濃度拡散層の一部の領域表面を被覆するように位置するゲート絶縁膜表面に導電層を形成する工程、一対の低濃度拡散層の導電層で被覆されていない領域に、ソース・ドレイン電極と接触を取るために第2導電型の不純物を注入し高濃度拡散層を形成する工程、低濃度拡散層上に位置する導電層の少なくともドレイン電極と接触を取るために設けられた高濃度拡散層側の領域を2つに分断するスリットを形成する工程を含む半導体装置製造方法。 (もっと読む)


1 - 20 / 57