説明

Fターム[5F140BG04]の内容

Fターム[5F140BG04]に分類される特許

1 - 20 / 219



【課題】ゲート高さが低いため製造容易で、ゲート−コンタクト間の容量を抑制し、ゲート−コンタクト間の短絡を抑制した半導体装置を提供する。
【解決手段】半導体装置の製造方法は基板上にFin型半導体層を形成する。Fin型半導体層に交差するダミーゲートが形成される。Fin型半導体層にソースおよびドレインが形成される。ダミーゲート上に層間絶縁膜を堆積した後、ダミーゲートの上面を露出させる。ダミーゲートを除去してゲートトレンチを形成する。ゲートトレンチ内のFin型半導体層の上部をリセスする。ゲートトレンチ内のFin型半導体層の表面にゲート絶縁膜を形成する。ゲート電極をゲートトレンチ内に充填する。ゲート電極をエッチングバックすることによってゲート電極を形成する。ゲート電極の上面の高さはソースおよびドレインにおけるFin型半導体層の上面の高さ以下かつゲートトレンチ内のFin型半導体層の上面の高さ以上である。 (もっと読む)


【課題】注入した導電性不純物により形成される結晶欠陥の密度を低減し、歩留まり率が向上するような半導体装置の製造方法を提供する。
【解決手段】本発明の実施形態にかかる半導体装置の製造方法は、半導体基板を加熱することにより、半導体基板の基板温度を200から500℃の間の所望の温度に維持すると同時に、半導体基板に導電性不純物をイオン注入法もしくはプラズマドーピング法を用いてドーピングし、ドーピングした導電性不純物を活性化させるための活性化処理を行う。 (もっと読む)


【課題】 チャンネルドーピングあるいは複雑なゲート電極パターン化の必要性なしに、複数のトランジスタが多閾値電圧を有する半導体装置を提供する。
【解決手段】 半導体装置及びその製造方法において、第1トランジスタは、第1材料で形成された下層と第2材料で形成された上層とを含むゲートスタックを有する。第2トランジスタは、第3材料で形成された下層と第2材料で形成された上層とを含むゲートスタックを有する。第3トランジスタは、第1材料で形成された下層と第4材料で形成された上層とを含むゲートスタックを有する。第4トランジスタは、第3材料で形成された下層と第4材料で形成された上層とを含むゲートスタックを有する。第1材料乃至前記第4材料の仕事関数は互いに異なる。第1トランジスタ乃至第4トランジスタは、互いに異なる閾値電圧を有する。 (もっと読む)


【課題】finFETにおける高集積化可能な、高濃度ソースドレインの形成方法の提供。
【解決手段】ソース領域、ドレイン領域およびソース領域とドレイン領域の間のチャネル領域を有するフィンを形成する。チャネル領域にダイレクトコンタクトする絶縁層と、絶縁層にダイレクトコンタクトする伝導性のゲート物質とを有するゲートスタックを形成する。チャネル領域を残したまま、ソース領域およびドレイン領域をエッチング除去する。ソース領域およびドレイン領域に隣接したチャネル領域の両側にソースエピタキシー領域およびドレインエピタキシー領域を形成する。ソースエピタキシー領域およびドレインエピタキシー領域は、エピタキシャル半導体を成長させながら、その場ドープされる。 (もっと読む)


【課題】SOI基板に形成されるMOSトランジスタの特性を向上することができる半導体装置及びその製造方法を提供する。
【解決手段】半導体基板1上に埋込絶縁層2を介して形成される第1半導体層3と、前記第1半導体層3及び前記絶縁層2内に形成され、前記第1半導体層3に接する第2半導体層12と、前記第2半導体層12の上に形成されるゲート絶縁膜13と、前記ゲート絶縁膜13上に形成されるゲート電極14gと、前記ゲート電極14gの側壁に形成されるサイドウォール7とを有する。 (もっと読む)


【課題】本発明は、ダミー材料の除去により形成される溝や孔に容易にトップラウンドを設けることができるドライエッチング方法を提供する。
【解決手段】本発明は、層間酸化膜に周囲を囲まれたダミー材料を除去することにより溝または孔を形成するドライエッチング方法において、前記ダミー材料を所定の深さまでエッチングし、前記エッチング後に等方性エッチングを行い、等方性エッチング後に前記ダミー材料の残りを除去することを特徴とするドライエッチング方法である。 (もっと読む)


【課題】ダミーゲート電極の除去により形成されたゲート溝へのゲート電極材料の埋め込み性を改善することにより、適切な閾値電圧を持つ電界効果型トランジスタを備えた半導体装置を容易に実現できるようにする。
【解決手段】ゲート電極111bは、それぞれ金属又は導電性金属化合物からなる第1導電膜108b、第2導電膜109b及び第3導電膜110bが下から順に形成された積層構造を有し、ゲート電極111aは、第2導電膜109a及び第3導電膜110aが下から順に形成された積層構造を有する。第1導電膜108bの仕事関数と第2導電膜109a、109bの仕事関数とは異なっている。第1導電膜108bは板状に形成されており、第2導電膜109a、109bは凹形状に形成されている。 (もっと読む)


【課題】半導体処理の方法が提供される。
【解決手段】いくつかの実施形態によれば、高い有効仕事関数を有する電極が形成される。この電極は、トランジスタのゲート電極であってもよく、導電材料の第1の層を堆積し、第1の層を水素含有ガスに露出し、第1の層に導電材料の第2の層を堆積することにより、high−kゲート誘電体に形成されてもよい。第1の層は、基板がプラズマ又はプラズマ発生ラジカルに露出されないプラズマ無しプロセス(non−plasma process)を用いて堆積される。第1の層が露出される水素含有ガスは、励起された水素種を含んでもよく、これは水素含有プラズマの一つであってもよく、水素含有ラジカルであってもよい。第2の層を堆積する前に、第1の層もまた、酸素に露出されてもよい。ゲートスタックのゲート電極の仕事関数は、いくつかの実施形態において約5eV又はそれ以上であってもよい。 (もっと読む)


【課題】コンタクトホールの一部が素子分離領域上に配置された構造の半導体装置において、短絡及び接合漏れ電流の増大を抑制する。
【解決手段】半導体装置50は、半導体基板10における活性領域10aを取り囲むように形成された溝15bに素子分離絶縁膜15aが埋め込まれた素子分離領域15と、活性領域10aに形成された不純物領域26と、半導体基板10上を覆う層間絶縁膜28と、層間絶縁膜28を貫通し、活性領域10a上及び素子分離領域15上に跨って形成されたコンタクトプラグ34と、少なくともコンタクトプラグ34下方において、不純物領域26上に形成された金属シリサイド膜33とを備える。素子分離領域15は、コンタクトプラグ34の下方において、素子分離絶縁膜15と活性領域10aとの間に設けられた保護絶縁膜35を更に有する。 (もっと読む)


【課題】下地絶縁膜の膜厚精度の向上とトランジスタ特性の変動抑制との両立が図られたMISトランジスタを備えた半導体装置、及びその製造方法を提供する。
【解決手段】半導体装置は、半導体基板100における活性領域103a上に形成されたゲート絶縁膜108aと、ゲート絶縁膜108a上に形成されたゲート電極111aとを有するMISトランジスタ170を備えている。ゲート絶縁膜108aは、活性領域103a上に形成された板状の下層ゲート絶縁膜210aと、下層ゲート絶縁膜210a上に形成された断面形状が凹状の上層ゲート絶縁膜211aとを有する。下層ゲート絶縁膜210aは、活性領域103a上に形成された下地絶縁膜104aと、第1の高誘電率絶縁膜106aとで構成され、上層ゲート絶縁膜211aは、第1の高誘電率絶縁膜106a上に形成された第2の高誘電率絶縁膜107aで構成される。 (もっと読む)


【課題】半導体集積回路の微細化に伴い非常に短くなったゲート長を有するトランジスタにおいて、ゲート絶縁膜におけるリーク電流の発生を抑制し、トランジスタとしての機能を高めることが可能な半導体装置を提供する。
【解決手段】主表面を有する半導体基板SUBと、半導体基板SUBの主表面に形成された1対のソース/ドレイン領域と、1対のソース/ドレイン領域に挟まれる領域上であって、主表面に接するように形成されたゲート絶縁膜AFEと、ゲート絶縁膜AFEの上面に接するように形成されたゲート電極POとを備える。上記1対のソース/ドレイン領域の一方から他方へ向かう方向のゲート電極POの長さは45nm未満である。ゲート絶縁膜AFEは反強誘電体膜を有する。 (もっと読む)


【課題】第1のトランジスタと第2のトランジスタが、ぞれぞれのドレイン領域とソース領域を共有して同一の半導体基板上に形成される構成の半導体装置の製造において、それぞれのトランジスタのソース領域およびドレイン領域の直下に埋め込み絶縁膜を効率的に形成できる製造方法を提供する。
【解決手段】半導体基板上にそれぞれのトランジスタのソース領域およびドレイン領域に対応してトレンチを形成し、前記トレンチをSiGe混晶層と半導体層を順次形成することにより充填し、さらに第1のトランジスタのソース領域および第2のトランジスタのドレイン領域直下のSiGe混晶層を、素子分離溝を介して選択エッチングにより除去し、第1のトランジスタのドレイン領域および第2のトランジスタのソース領域として共有される拡散領域直下のSiGe混晶層を、前記拡散領域に形成した孔を介して選択エッチングし、除去する。 (もっと読む)


【課題】高誘電率ゲート絶縁膜を用いたCMIS型半導体集積回路において、短チャネル長、且つ狭チャネル幅のデバイス領域では、ソースドレイン領域の活性化アニールによって、高誘電率ゲート絶縁膜とシリコン系基板部との界面膜であるILの膜厚が増加することによって、閾値電圧の絶対値が増加するという問題がある。
【解決手段】本願の一つの発明は、MISFETを有する半導体集積回路装置の製造方法において、MISFETのゲートスタック及びその周辺構造を形成した後、半導体基板表面を酸素吸収膜で覆い、その状態でソースドレインの不純物を活性化するためのアニールを実行し、その後、当該酸素吸収膜を除去するものである。 (もっと読む)


【課題】パターンの微細化、特に、SRAMのセル面積を縮小するためには、隣接ゲートの端部間距離を縮小することが重要となる。しかし、28nmテクノロジノードにおいては、ArFによる単一回露光でパターンを転写することは、一般に困難である。従って、通常、複数回の露光、エッチング等を繰り返すことによって、微細パターンを形成しているが、ゲートスタック材にHigh−k絶縁膜やメタル電極部材が使用されているため、酸化耐性やウエットエッチ耐性が低い等の問題がある。
【解決手段】本願発明は、メモリ領域におけるhigh−kゲート絶縁膜およびメタル電極膜を有するゲート積層膜のパターニングにおいて、最初に、第1のレジスト膜を用いて、隣接ゲート電極間切断領域のエッチングを実行し不要になった第1のレジスト膜を除去した後、第2のレジスト膜を用いて、ライン&スペースパターンのエッチングを実行するものである。 (もっと読む)


【課題】MISFETにおいて、信頼性寿命の低下を抑制する。
【解決手段】半導体装置100は、少なくとも1つのMISFETを備える。MISFETは、第1導電型の半導体基板101と、半導体基板101上にゲート絶縁膜104を介して形成されたゲート電極105と、半導体基板101におけるゲート電極105の側方に形成された第2導電型のソース領域106と、他方の側方に形成された第2導電型のドレイン領域107と、半導体基板101におけるゲート電極105の下方であり且つソース領域106及びドレイン領域107に挟まれたチャネル領域111とを備える。ゲート絶縁膜104は、ゲート電極105の底面下から側面上にまで亘って形成されている。チャネル領域111において、ドレイン領域107近傍の第1領域における不純物濃度は、チャネル領域111における第1領域以外の第2領域における不純物濃度に比べて低い。 (もっと読む)


【課題】微細化を達成するとともに、ゲート電極等の信頼性を確保する半導体装置の製造方法を提供する。
【解決手段】N型MISトランジスタ及びP型MISトランジスタのそれぞれのゲート形成領域において、N型MISトランジスタのゲート形成領域の凹部内に形成されたゲート絶縁膜F0上に第1の金属含有膜F1を、P型MISトランジスタのゲート形成領域の凹部内に形成されたゲート絶縁膜F0上に第3の金属含有膜F3を形成し、第1の金属含有膜F1上及び第3の金属含有膜F3上に第2の金属含有膜F2を形成し、N型MISトランジスタのゲート絶縁膜F0に接する第1の金属含有膜F1の仕事関数がP型MISトランジスタのゲート絶縁膜F0に接する第3の金属含有膜F3の仕事関数よりも小さい。 (もっと読む)


【課題】制御性よく空洞部を形成することが可能な半導体装置の製造方法を提供する。
【解決手段】ダミーゲート電極22上にオフセットスペーサ材料層を形成し、オフセットスペーサ材料層に異方性エッチングを行い、ダミーゲート電極22の側壁下部にオフセットスペーサ24を形成する。そして、サイドウォール15の形成後、ダミーゲート電極22とオフセットスペーサ24とを除去し、高誘電率材料からなるゲート絶縁膜13とメタルゲート電極14とを異方性の高い堆積方法を用いて形成する。 (もっと読む)


【課題】ドレイン端側においてゲート絶縁膜の膜厚を増大させる構成のMOSトランジスタにおいて、オン抵抗を低減し、耐圧を向上させる。
【解決手段】高電圧トランジスタ10のゲート電極構造をチャネル領域CHを第1の膜厚で覆う第1のゲート絶縁膜12G1と、第1の膜厚よりも大きい第2の膜厚で覆う第2のゲート絶縁膜12G2とし、第1のゲート絶縁膜12G1上の第1のゲート電極13G1と、第2のゲート絶縁膜12G2上の第2のゲート電極13G2の構成とする。更に、第1のゲート電極13G1と前記第2のゲート電極13G2とは、前記第1のゲート絶縁膜12G1から延在する絶縁膜12HKで隔てられる。 (もっと読む)


【課題】半導体装置の性能を向上させる。
【解決手段】nチャネル型MISFET用のメタルゲート電極であるゲート電極GE1とpチャネル型MISFET用のダミーゲート電極GE2とを形成してから、nチャネル型MISFET用のソース・ドレイン領域とpチャネル型MISFET用のソース・ドレイン領域をそれぞれ形成する。その後、ダミーゲート電極GE2を除去し、ダミーゲート電極GE2が除去されたことで形成された凹部にpチャネル型MISFET用のメタルゲート電極を形成する。 (もっと読む)


1 - 20 / 219