説明

Fターム[5F140BH15]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ソース、ドレイン領域及びSD近傍領域 (10,828) | 不純物分布 (3,598) | 断面分布の形状、配置 (3,436) | 追加領域(エクステンション領域を含む) (3,054) | LDD(Lightly doped dorain−source) (1,105)

Fターム[5F140BH15]に分類される特許

21 - 40 / 1,105


【課題】回路素子の素子特性の変動を抑制すること。
【解決手段】半導体基板110には、拡散領域111を有する抵抗素子(回路素子)R1が形成されている。拡散領域111を含む半導体基板110の上には、層間絶縁膜161が形成される。拡散領域111のシリサイド層(コンタクト部)111aは、コンタクトプラグ162を介して層間絶縁膜161上の配線と接続される。拡散領域111の上には、コンタクトホール163を形成するためのエッチングストッパ膜152が形成されている。このエッチングストッパ膜152は、拡散領域111上の保護絶縁膜131に対応する部分が除去され、開口が形成されている。 (もっと読む)


【課題】長さ方向がゲート長方向と平行なトレンチに形成されたゲート電極を有し、単位平面積当たり大きなゲート幅を有する高駆動能力横型のMOSトランジスタの駆動能力を、平面的な素子面積を増加させずに向上させる半導体装置を提供する。
【解決手段】半導体基板の表面に長さ方向がゲート長方向と平行なトレンチが形成された第1トレンチ領域013と、前記第1トレンチ領域の凹部底面と同一平面に前記第1トレンチ領域の長さ方向の両端に接して設けられた第2トレンチ領域014および第3トレンチ領域015と、トレンチ領域に形成された第2導電型のウェル領域005と、前記第1トレンチ領域に設けられたゲート絶縁膜004と、前記ゲート絶縁膜上に接して設けられたゲート電極003と、前記第1トレンチと前記第2トレンチ領域と前記第3トレンチ領域に前記ウェル領域より浅く設けられた第1導電型のソース領域とドレイン領域を有する半導体装置。 (もっと読む)


【課題】第1の領域のゲート絶縁膜への酸化剤の進入を防止しつつ、第2の領域の複数の第1の配線間に設けられた酸化アルミニウム膜を選択的に除去する。
【解決手段】第1の領域において第1の積層体の側壁を覆い、第2の領域において複数の第1の配線を覆うように形成した第1の絶縁膜をマスクとして、第1の領域に第1のイオン注入を施す。その後、第1の領域において第1の積層体の側壁を覆い、第2の領域において複数の第1の配線間を埋設するように形成した、酸化アルミニウムを主体とする第2の絶縁膜をマスクとして、第1の領域に第2のイオン注入を施す。第2の絶縁膜を、第1の絶縁膜に対して選択的に除去する。 (もっと読む)


【課題】エピタキシャル成長後に不純物を導入するためのイオン注入工程を省略する。また、エピタキシャル成長層の厚さがばらついた場合であっても、ピラー部にまで不純物が導入されることによるトランジスタ特性の変動を防止する。
【解決手段】基板の主面にシリコンピラーを形成した後、シリコンピラーの下の基板内に、シリコンピラーと逆導電型の第1の拡散層を形成する。シリコンピラーの側面にゲート絶縁膜を介してゲート電極を形成する。次に、シリコンピラーの上面上に不純物を含むシリコンをエピタキシャル成長させることで、シリコンピラーと逆導電型の第2の拡散層を形成する。 (もっと読む)


【課題】高耐圧トランジスタの低濃度不純物拡散層がコンタミネーションから保護されて、半導体装置の特性を安定化できるようにする。
【解決手段】基板1の上に、ゲート絶縁膜3a及びゲート電極4aを順次形成し、ゲート電極4aをマスクとして基板1に不純物注入を行うことにより、基板1の上部におけるゲート電極4aの側方に低濃度不純物拡散層5aを形成する。続いて、ゲート電極4aの上から該ゲート電極4aの側方を通って低濃度不純物拡散層5aの上の一部までを連続して覆うように不純物拡散抑制膜7aを形成する。続いて、ゲート電極4a及び不純物拡散抑制膜7aをマスクとして基板1に不純物注入を行うことにより、基板1の上部におけるゲート電極4aの側方に、低濃度不純物拡散層5aよりも不純物濃度が高い高濃度不純物拡散層8aを形成する。その後に、不純物拡散抑制膜7aを残存させた状態で基板1に対して加熱処理を行う。 (もっと読む)


【課題】半導体装置の信頼性を向上させ、半導体装置の製造歩留まりを向上させる。
【解決手段】半導体基板1の主面に酸化膜として絶縁膜2を形成し、絶縁膜2上に窒化シリコン膜を形成してから、素子分離用の溝4aをプラズマドライエッチングにより形成し、溝4aを埋めるように酸化シリコンからなる絶縁膜6をHDP−CVD法で形成し、CMP処理により溝4aの外部の絶縁膜6を除去し、溝4a内に絶縁膜6を残す。それから、窒化シリコン膜を除去する。その後、絶縁膜2をウェットエッチングで除去して半導体基板1を露出させるが、この際、半導体基板1の主面に140ルクス以上の光を当てながら絶縁膜2をウェットエッチングする。 (もっと読む)


【課題】歩留まりを向上可能な半導体装置の製造方法および半導体装置を提供すること。
【解決手段】実施形態によれば、半導体装置の製造方法が提供される。半導体装置の製造方法は、半導体基板上に形成される検査用トランジスタおよび製品用トランジスタのソースおよびドレインを活性化させるアニール処理を行うアニール工程と、アニール工程後における検査用トランジスタのゲート、ソースおよびドレインをシリサイド化させる検査用サリサイド工程と、検査用サリサイド工程後における検査用トランジスタの特性を測定する測定工程と、測定工程によって測定された特性と所望の特性との差分とに基づいて製品用トランジスタの特性を所望の特性へ近付ける特性調整アニール処理を行う特性調整アニール工程と、特性調整アニール工程後における製品用トランジスタのゲート、ソースおよびドレインをシリサイド化させる本サリサイド工程とを含む。 (もっと読む)


【課題】リセスの下部に形成され不純物の注入量が異なる複数の領域を備える電界緩和層(リサーフ層)を備える半導体装置において、製造工程数の増加を抑えつつ、ディッシングの発生を防止する。
【解決手段】半導体装置は、半導体素子の外周領域であるPウェル2の外縁部に形成されたP型のリサーフ層10を備える。リサーフ層10は、P型不純物が第1面密度で注入された第1リサーフ領域11と、第1リサーフ領域11の外側に配設され、P型不純物が第1面密度よりも小さい第2面密度で注入された第2リサーフ領域12と、第2リサーフ領域12の外側に配設され、P型不純物が第2面密度よりも小さい第3面密度で注入された第3リサーフ領域13とを含む。このうち第1リサーフ領域11および第3リサーフ領域13は、半導体層の上面に形成されたリセス11r,13rの下に形成される。 (もっと読む)


【課題】Finger形状のソース電極、ドレイン電極と接続される各N+型ソース層、N+型ドレイン層を取り囲むようにP+型コンタクト層が構成される場合でも、サージ電圧印加時に各Finger部の寄生バイポーラトランジスタが均一にオンする。
【解決手段】互いに平行に延在する複数のN+型ソース層9、N+型ドレイン層8を取り囲むようにP+型コンタクト層10を形成する。N+型ソース層9上、N+型ドレイン層8上及びN+型ソース層9が延在する方向と垂直方向に延在するP+型コンタクト層10上にそれぞれ金属シリサイド層9a、8a、10aを形成する。金属シリサイド層9a、8a、10a上に堆積された層間絶縁膜13に形成されたコンタクトホール14を介して、該各金属シリサイド層と接続するFinger形状のソース電極15、ドレイン電極16及び該Finger形状の各電極を取り囲むP+型コンタクト電極17を形成する。 (もっと読む)


【課題】nチャネル型MISFETのしきい値を調整する目的でLaなどが導入された高誘電率膜を含むゲート絶縁膜と、その上部のメタルゲート電極との積層構造を有する半導体装置において、ゲート電極のゲート幅を縮小した際、基板側からメタルゲート電極の底面に酸化種が拡散してnチャネル型MISFETの仕事関数が上昇することを防ぐ。
【解決手段】HfおよびLn含有絶縁膜5bとその上部のメタルゲート電極である金属膜9との間に、酸化種の拡散を防ぐためにAl含有膜8cを形成する。 (もっと読む)


【課題】高耐圧トランジスタ形成に適した半導体装置の新規な製造方法を提供する。
【解決手段】
半導体装置の製造方法は、シリコン基板に第1導電型第1領域と、第1領域に接する第2導電型第2領域を形成し、ゲート絶縁膜を形成し、第1領域と第2領域とに跨がるゲート電極を形成し、ゲート電極上から第2領域上に延在する絶縁膜を形成し、ゲート電極をマスクとし第2導電型不純物を注入してソース領域およびドレイン領域を形成し、ゲート電極および絶縁膜を覆って金属層を形成し熱処理を行って、ソース領域、ドレイン領域及びゲート電極にシリサイドを形成し、層間絶縁膜にソース領域、ドレイン領域、ゲート電極に達する第1、第2、第3コンタクトホール、及び絶縁膜に達する孔を形成し、第1〜第3コンタクトホール及び孔に導電材料を埋め込み、第1〜第3導電ビアと、孔の内部に配置された導電部材とを形成する。 (もっと読む)


【課題】相互接続構造の珪化物層と、ロープロファイルバンプを含む、バンプ間ショートを防止したパワーMOSFETからなる半導体デバイスおよび製造方法を提供する。
【解決手段】基板上にソース領域160およびドレイン領域170を有し、珪化物層174が、ソース領域およびドレイン領域の上に配置されている。第1の相互接続層194が、珪化物層上に形成されており、ソース領域に接続される第1のランナー196と、ドレイン領域に接続される第2のランナー198とが配置される。第2の相互接続層214が、第1の相互接続層上に形成されており、第1のランナーに接続される第3のランナー216と、第2のランナーに接続される第4のランナー218とを含む。第3の相互接続層234が形成され、ソースパッド236、ソースバンプ240が電気的に接続される。 (もっと読む)


【課題】従来の半導体装置においては、シリコンエピタキシャル層に結晶欠陥が生じ易いという問題がある。
【解決手段】半導体装置1は、シリコン基板10、歪み付与層20、シリコン層30、FET40、および素子分離領域50を備えている。シリコン基板10上には、歪み付与層20が設けられている。歪み付与層20上には、シリコン層30が設けられている。歪み付与層20は、シリコン層30中のFET40のチャネル部に格子歪みを生じさせる。シリコン層30中には、FET40が設けられている。FET40は、ソース・ドレイン領域42、SD extension領域43、ゲート電極44およびサイドウォール46を含んでいる。ソース・ドレイン領域42と上述の歪み付与層20とは、互いに離間している。FET40の周囲には、素子分離領域50が設けられている。素子分離領域50は、シリコン層30を貫通して歪み付与層20まで達している。 (もっと読む)


【課題】 デバイスのゲートとソースとの間の低い直列抵抗を維持し、同時に、ゲートからドレインへの過剰なオーバーラップによって形成される悪影響を最小限にするFETデバイスの製造を可能にする。
【解決手段】半導体基板の上に少なくとも1対の隣接して離間配置された、オフセット・スペーサ114を備えるゲート構造体102の上にスペーサ層132を形成するステップであって、ゲート構造体は、スペーサ層がゲート構造体間の領域で第1の厚さで形成され、その他の場所で第2の厚さで形成されるように離間配置され、第2の厚さは第1の厚さより厚い、ステップと、1対の隣接して離間配置されたゲート構造体のオフセット・スペーサに隣接して非対称スペーサ構造体124a、bを形成するようにスペーサ層をエッチングするステップとを含み、非対称スペーサ構造体は、ソース及びドレイン領域の画定において用いられる。 (もっと読む)


【課題】コンタクトホールの一部が素子分離領域上に配置された構造の半導体装置において、短絡及び接合漏れ電流の増大を抑制する。
【解決手段】半導体装置50は、半導体基板10における活性領域10aを取り囲むように形成された溝15bに素子分離絶縁膜15aが埋め込まれた素子分離領域15と、活性領域10aに形成された不純物領域26と、半導体基板10上を覆う層間絶縁膜28と、層間絶縁膜28を貫通し、活性領域10a上及び素子分離領域15上に跨って形成されたコンタクトプラグ34と、少なくともコンタクトプラグ34下方において、不純物領域26上に形成された金属シリサイド膜33とを備える。素子分離領域15は、コンタクトプラグ34の下方において、素子分離絶縁膜15と活性領域10aとの間に設けられた保護絶縁膜35を更に有する。 (もっと読む)


【課題】半導体集積回路の微細化に伴い非常に短くなったゲート長を有するトランジスタにおいて、ゲート絶縁膜におけるリーク電流の発生を抑制し、トランジスタとしての機能を高めることが可能な半導体装置を提供する。
【解決手段】主表面を有する半導体基板SUBと、半導体基板SUBの主表面に形成された1対のソース/ドレイン領域と、1対のソース/ドレイン領域に挟まれる領域上であって、主表面に接するように形成されたゲート絶縁膜AFEと、ゲート絶縁膜AFEの上面に接するように形成されたゲート電極POとを備える。上記1対のソース/ドレイン領域の一方から他方へ向かう方向のゲート電極POの長さは45nm未満である。ゲート絶縁膜AFEは反強誘電体膜を有する。 (もっと読む)


【課題】半導体基板の表面に導入された不純物を、前記表面の浅い領域に高精度かつ高濃度で分布させ、不純物が半導体基板の深い領域に拡散することを防ぐことで、半導体装置の歩留まりおよび性能を向上させ、装置の微細化を容易にする。
【解決手段】N型MISトランジスタにおいて、半導体基板300に打ち込まれた炭素が、同じ領域に打ち込まれたホウ素を引き寄せる性質を利用し、ホウ素をN型の不純物として注入したハロー領域306に炭素を共注入して炭素注入層307を形成する。これにより、ホウ素が増速拡散することを防ぎ、ハロー領域306を高い精度で形成することを可能とすることで、微細化された半導体素子の短チャネル効果の発生を抑制する。 (もっと読む)


【課題】下地絶縁膜の膜厚精度の向上とトランジスタ特性の変動抑制との両立が図られたMISトランジスタを備えた半導体装置、及びその製造方法を提供する。
【解決手段】半導体装置は、半導体基板100における活性領域103a上に形成されたゲート絶縁膜108aと、ゲート絶縁膜108a上に形成されたゲート電極111aとを有するMISトランジスタ170を備えている。ゲート絶縁膜108aは、活性領域103a上に形成された板状の下層ゲート絶縁膜210aと、下層ゲート絶縁膜210a上に形成された断面形状が凹状の上層ゲート絶縁膜211aとを有する。下層ゲート絶縁膜210aは、活性領域103a上に形成された下地絶縁膜104aと、第1の高誘電率絶縁膜106aとで構成され、上層ゲート絶縁膜211aは、第1の高誘電率絶縁膜106a上に形成された第2の高誘電率絶縁膜107aで構成される。 (もっと読む)


【課題】 ファセット起因による短チャネル効果を回避すること。
【解決手段】 半導体基板(1)に設けられたMISトランジスタ(4,5,13)からなる半導体デバイス(200)は、半導体基板(1)に設けられた素子分離領域(2)と、素子分離領域(2)によって区画された活性領域(3)と、活性領域(3)に設けられたMISトランジスタのチャネル領域よりも上方へ突出したMISトランジスタのソース/ドレイン領域(13)と、ソース/ドレイン領域(13)の下方に設けられた拡散層(12)と、を備える。ソース/ドレイン領域(13)の導電型に対する拡散層(12)の導電型が逆の極性となっている。 (もっと読む)


【課題】半導体装置の信頼性を向上させる。
【解決手段】ゲート電極GE1,GE2、ソース・ドレイン用のn型半導体領域SD1及びp型半導体領域SD2を形成してから、半導体基板1上にNi−Pt合金膜を形成し、第1の熱処理を行って合金膜とゲート電極GE1,GE2、n型半導体領域SD1及びp型半導体領域SD2とを反応させることで、(Ni1−yPtSi相の金属シリサイド層13aを形成する。この際、Niの拡散係数よりもPtの拡散係数の方が大きくなる熱処理温度で、かつ、金属シリサイド層13a上に合金膜の未反応部分が残存するように、第1の熱処理を行う。その後、未反応の合金膜を除去してから、第2の熱処理を行って金属シリサイド層13aを更に反応させることで、Ni1−yPtSi相の金属シリサイド層13bを形成する。第2の熱処理の熱処理温度は580℃以上で、800℃以下とする。 (もっと読む)


21 - 40 / 1,105