説明

Fターム[5F140BK12]の内容

Fターム[5F140BK12]の下位に属するFターム

イオン注入 (3,132)
固相拡散 (119)

Fターム[5F140BK12]に分類される特許

1 - 20 / 146


【課題】ゲート電極の断線による縦型トランジスタの故障を改善すること。
【解決手段】半導体装置は、第1の方向(Y)に互いに隙間を空けて形成された複数の半導体ピラー(5A〜5A)から成る半導体ピラー群(5)を含む。半導体ピラー群(5)の内、両端部を除く中間部に位置する半導体ピラー(5A〜5A)のいずれか1つである特定の半導体ピラー(5A)と隣接して、ダミーピラー(6)が第1の方向(Y)と直交する第2の方向(X)に設けられている。ゲート絶縁膜(10)が、複数の半導体ピラー(5A〜5A)の各々の外周面とダミーピラー(6)の外周面の一部とに形成されている。ゲート絶縁膜(10)を介して、複数の半導体ピラー(5A〜5A)の間の隙間と特定の半導体ピラー(5A)とダミーピラー(6)との間の隙間とを埋めるように、ゲート電極(11)が、複数の半導体ピラーの側面とダミーピラーの側面とに形成されている。 (もっと読む)


【課題】注入した導電性不純物により形成される結晶欠陥の密度を低減し、歩留まり率が向上するような半導体装置の製造方法を提供する。
【解決手段】本発明の実施形態にかかる半導体装置の製造方法は、半導体基板を加熱することにより、半導体基板の基板温度を200から500℃の間の所望の温度に維持すると同時に、半導体基板に導電性不純物をイオン注入法もしくはプラズマドーピング法を用いてドーピングし、ドーピングした導電性不純物を活性化させるための活性化処理を行う。 (もっと読む)


【課題】ヒ素(As)を高濃度にドーピングした状態でエクステンション領域のエピタキシャル成長膜表面に凹凸を発生させることなく、平滑な面に形成することを可能とする。
【解決手段】半導体基板11上にゲート絶縁膜12を介してゲート電極13を備え、前記ゲート電極13の両側の前記半導体基板11上に形成された不純物を含有してなるエクステンション領域17、18を備えた半導体装置1であって、前記エクステンション領域17、18は、シリコンゲルマニウムにヒ素を含む状態でエピタキシャル成長されたエピタキシャル成長膜からなり、このエピタキシャル成長膜は、ヒ素をドーピングしながらシリコンとゲルマニウムとを前記半導体基板11上に選択的にエピタキシャル成長させて形成される。 (もっと読む)


【課題】FinFETの特性が均一な半導体装置の製造方法を提供する。
【解決手段】実施形態に係る半導体装置の製造方法は、半導体基板の上層部分に凹部を形成する工程と、前記凹部内に犠牲材を配置する工程と、前記半導体基板及び前記犠牲材を選択的に除去することにより、一方向に延び、周期的に配列された複数本のフィンを形成する工程と、前記フィン間の空間の下部に素子分離絶縁膜を形成する工程と、前記犠牲材を除去する工程と、前記フィンの露出面上にゲート絶縁膜を形成する工程と、前記素子分離絶縁膜上に、前記フィンを跨ぐように、前記一方向に対して交差した方向に延びるゲート電極を形成する工程と、を備える。 (もっと読む)


【課題】幅広い用途に適用可能なプロセスウィンドウの広いプラズマドーピング方法を提供する。
【解決手段】リン、ヒ素及びアンチモンの少なくとも1種を含むガスのプラズマを生成して該プラズマ中のリン、ヒ素及びアンチモンの少なくとも1種のラジカル21を処理対象物13たるシリコン基板の表面に堆積させる第1工程と、第1工程で処理対象物13表面に堆積されたラジカル21にヘリウムイオン22を照射する第2工程とを含む。 (もっと読む)


【課題】細孔の周囲を囲む細孔壁の材料が膜厚方向に任意に制御されたナノ多孔質薄膜、およびその製造方法を提供することにある。
【解決手段】本発明によるナノ多孔質構造を有するナノ多孔質薄膜は、膜厚方向に沿って複数の層領域を有し、前記複数の層領域は、第一の細孔を有する第一の層領域と第二の細孔を有する第二の層領域とを含み、前記第一の細孔と前記第二の細孔は貫通し、前記第一の層領域と前記第二の層領域とを構成する材料が異なることを特徴とする。 (もっと読む)


【課題】シリコンエピタキシャル層の支えの喪失を防止した、局所SOI構造の形成方法の提供。
【解決手段】SiGe混晶層31SG1〜31SG4とシリコンエピタキシャル層31ES1,31ES2,31ES3および31ES4が積層された構造において、
それぞれ、Nウェル31NW及びPウェル31PWがSiGe混晶層31SG1〜31SG4側に突き出る構造を形成し、SiGe混晶層31SG1〜31SG4をエッチングにより除去する際に、支えとなるようにする。 (もっと読む)


【課題】チャネル領域に歪みを加える領域内の格子位置に存在する炭素量を多くすることができる半導体装置の製造方法を提供する。
【解決手段】半導体基板のうちゲート電極5両側にエクステンション領域7s、7d、ポケット領域8s、8dを形成し、ゲート電極5側面にサイドウォール9を形成し、半導体基板1のうちサイドウォール9、ゲート電極5から露出した領域をエッチングして凹部1s、1dを形成し、凹部1s、1d内に第3不純物を含む半導体層11s,11dを形成し、第1熱処理により第3不純物を活性化してゲート電極5の両側方にソース/ドレイン領域11s,11dを形成し、半導体層11s,11d内に炭素を有する第4不純物をイオン注入して半導体層11s,11dをアモルファス領域13s,13dとなし、第2熱処理によりアモルファス領域13s,13d内結晶の格子位置での炭素の結合性を高めてゲート電極5の両側方に歪発生領域14s,14dを形成する工程を有する。 (もっと読む)


【課題】十分な電流を流すことのできるトランジスタを備えた半導体装置を提供することを可能にする。
【解決手段】一実施形態の半導体装置は、半導体基板と、半導体基板上に設けられ、上面および側面が鞍形状を形成し、上面における鞍点を含む領域における第1方向の両端に凸部をそれぞれ有する半導体領域と、凸部の上面を除いた半導体領域の上面と、第1方向に沿った側面と、第1方向に直交する第2方向に沿った、上面における鞍点を含む領域側の前記凸部の側面との上に設けられたゲート絶縁膜と、ゲート絶縁膜の上に設けられたゲート電極であって、上面における鞍点を含む領域の直上に設けられた本体部と、本体部に接続され半導体領域の第1方向に沿った側面を覆う脚部と、を有し、脚部の第1方向における長さが上面における鞍点を含む領域の直上に設けられた本体部の第1方向における長さよりも長くなるように構成されたゲート電極と、ゲート電極の両側の半導体基板に設けられた第1および第2不純物領域と、を備えている。 (もっと読む)


【課題】本発明は、チャネル抵抗を減少させてオン電流を増加させることが可能で、かつ各トランジスタを独立して、安定して動作させることの可能な半導体装置及びその製造方法を提供することを課題とする。
【解決手段】Y方向に延在するように半導体基板13に設けられ、底面18c及び対向する第1及び第2の側面18a,18bを有するゲート電極用溝18と、ゲート絶縁膜21を介して、ゲート電極用溝18の下部を埋め込むように配置されたゲート電極22と、ゲート電極用溝18を埋め込むように配置され、ゲート電極22の上面22aを覆う埋め込み絶縁膜24と、第1の側面18aに配置されたゲート絶縁膜21の上部21Aを覆うように、半導体基板13に設けられた第1の不純物拡散領域28と、少なくとも第2の側面18bに配置されたゲート絶縁膜21を覆うように、半導体基板13に設けられた第2の不純物拡散領域29と、を有する。 (もっと読む)


【課題】ゲートメタル電極とHigh−k膜とを用いた半導体装置において、低抵抗なゲートメタル電極により仕事関数を調整できるようにする。
【解決手段】半導体装置は、Nウェル102の上に形成された第1のゲート絶縁膜109と、該第1のゲート絶縁膜109の上に形成された第1のゲート電極とを備えている。第1のゲート絶縁膜109は、第1の高誘電体膜109bを含み、第1のゲート電極は、第1の高誘電体膜109bの上に形成され、TiN層110aとAlN層110bとが交互に積層された第1の実効仕事関数調整層110を含む。TiN層110aはAlN層110bよりも抵抗が小さく、且つ、AlN層110bはTiN層110aよりも実効仕事関数の調整量が大きい。 (もっと読む)


【課題】ドーパントの濃度をより高く確保しつつも、ドーパントが拡散されるジャンクション深さを制御することができ、改善された接触抵抗を実現し、チャネル領域との離隔間隔を減らしてチャネルのしきい電圧(Vt)を改善できる埋没ジャンクションを有する垂直型トランジスタ及びその形成方法を提供すること。
【解決手段】半導体基板に第1の側面に反対される第2の側面を有して突出した壁体)を形成し、壁体の第1の側面の一部を選択的に開口する開口部を有する片側コンタクトマスクを形成した後、開口部に露出した第1の側面部分に互いに拡散度が異なる不純物を拡散させて第1の不純物層及び該第1の不純物層を覆う第2の不純物層を形成することを特徴とする。 (もっと読む)


【課題】 チャネル領域に応力を印加するよう作用する階段状のソース/ドレイン・エピタキシャル領域を、製造プロセスを有意に複雑あるいは冗長とすることなく形成する。
【解決手段】 ゲート電極をマスクとしてドーパントを注入し、半導体基板内にドーパント注入領域を形成する(S2)。サイドウォールの形成(S3)後、ゲート電極及びサイドウォールをマスクとして半導体基板内に第1のリセスを形成する(S4)。このとき、第1のリセスの内壁の一部からドーパント注入領域が露出される。その後、上記ドーパント注入領域を選択エッチングにより除去し、第1のリセスに連通し且つ第1のリセスより浅い第2のリセスを形成する(S5)。それにより、階段状のリセスが形成される。そして、第1のリセス及び第2のリセス内に、チャネル領域へのストレッサとして作用する半導体材料を成長させてソース/ドレイン領域を形成する(S6)。 (もっと読む)


【課題】保護膜としてSiN膜が使用されている場合であっても、素子動作特性の変動を軽減することができる半導体装置及びその製造方法を提供する。
【解決手段】半導体装置2は、ドレインドリフト領域12を有する半導体基板11と、ドレインドリフト領域12上に形成されたフィールド酸化膜17と、ゲート電極18と、中間絶縁膜17と、メタル層21,22と、これらを覆うSiN膜23と、SiN膜23上にO3−TEOSを用いたCVD法により形成され、カーボンを含有するPSG膜24とを有する。 (もっと読む)


量子井戸トランジスタは、ゲルマニウムの量子井戸チャネル領域を有する。シリコンを含有したエッチング停止領域が、チャネル近くへのゲート誘電体の配置を容易にする。III−V族材料のバリア層がチャネルに歪みを付与する。チャネル領域の上及び下の傾斜シリコンゲルマニウム層によって性能が向上される。複数のゲート誘電体材料によって、high−k値のゲート誘電体の使用が可能になる。
(もっと読む)


トランジスタは、基板と、基板上の一対のスペーサと、基板上且つスペーサ対間のゲート誘電体層と、ゲート誘電体層上且つスペーサ対間のゲート電極層と、ゲート電極層上且つスペーサ対間の絶縁キャップ層と、スペーサ対に隣接する一対の拡散領域とを有する。絶縁キャップ層は、ゲートにセルフアラインされるエッチング停止構造を形成し、コンタクトエッチングがゲート電極を露出させることを防止し、それにより、ゲートとコンタクトとの間の短絡を防止する。絶縁キャップ層は、セルフアラインコンタクトを実現し、パターニング限界に対して一層ロバストな、より幅広なコンタクトを最初にパターニングすることを可能にする。
(もっと読む)


低寄生抵抗であるチャネル歪みされたマルチゲートトランジスタとその製造方法に係る。ゲートを連結したチャネル側壁の高さがHsiである半導体フィンのチャネル領域の上にゲートスタックを形成されてよく、ゲートスタックに隣接する半導体フィンのソース/ドレイン領域内に、エッチングレートを制御するドーパントを注入してよい。ドーピングされたフィン領域をエッチングして、半導体フィンの、略Hsiに等しい厚みを除去して、ゲートスタックの一部の下にある半導体基板の部分を露呈させるソース/ドレイン延長キャビティを形成してよい。露呈した半導体基板の上に材料を成長させて、再成長したソース/ドレイン・フィン領域を形成して、ソース/ドレイン延長キャビティを充填して、ゲートスタックからの長さを、チャネルの長さに実質的に平行な方向に離れる方向に延ばしてよい。 (もっと読む)


本発明の実施例として、半導体装置上のエピタキシャル領域を示した。ある実施例では、エピタキシャル領域は、成膜−エッチングプロセスを経て基板に成膜される。周期的な成膜−エッチングプロセスの間に、スペーサの下側に形成されるキャビティは、エピタキシャルキャップ層によって埋め戻される。エピタキシャル領域およびエピタキシャルキャップ層は、チャネル領域での電子移動度を改善し、短チャネル効果が抑制され、寄生抵抗が低下する。
(もっと読む)


制御されたチャネル歪みおよび接合抵抗を有するNMOSトランジスタ、およびその製造方法が、本明細書で提供される。いくつかの実施形態において、NMOSトランジスタを形成するための方法は、(a)p型シリコン区域を有する基板を準備すること、(b)p型シリコン区域の上にシリコンシード層を堆積すること、(c)シリコン、シリコンおよび格子調整元素またはシリコンおよびn型ドーパントを備えるシリコン含有バルク層をシリコンシード層の上に堆積すること、(d)(c)で堆積されたシリコン含有バルク層に欠けている格子調整元素またはn型ドーパントのうちの少なくとも1つをシリコン含有バルク層の中に注入すること、(e)(d)の注入の後、シリコン含有バルク層をエネルギービームを用いてアニールすることを含むことができる。いくつかの実施形態において、基板は、その中に画定されたソース/ドレイン区域を有する、部分的に製造されたNMOSトランジスタデバイスを備えることができる。
(もっと読む)


【課題】 これまでのイオン注入処理に比べて、高い時間効率で高濃度のキャリア不純物原子を、通常のイオン注入の処理時間で低エネルギードーピングできる方法を提供する。
【解決手段】 半導体基板としてのシリコン基板11の表面上に加工により突出部を形成した該シリコン基板の内部においてドナーもしくはアクセプターとなる不純物原子を含む不純物薄膜を、堆積膜13としてシリコン基板の表面上に堆積する工程と、前記突出部における前記堆積膜の斜め上方からイオン注入を行なうとともに、該イオン注入によって、前記不純物原子を堆積膜内部からシリコン基板の前記突出部の表面内部にリコイルさせる工程と、を含む半導体装置の製造方法。 (もっと読む)


1 - 20 / 146