説明

Fターム[5F140BK24]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ソース・ドレイン領域、電極及びSD近傍領域の製造 (13,929) | ソース、ドレイン電極形成前の処理 (1,173)

Fターム[5F140BK24]の下位に属するFターム

Fターム[5F140BK24]に分類される特許

1 - 20 / 102


【課題】寄生抵抗が低く、接合リーク電流が抑制されたトランジスタを容易に形成することができる半導体装置の製造方法を提供する。
【解決手段】実施形態にかかる半導体装置の製造方法は、シリコン基板中のチャネル領域上にゲート絶縁膜を介してゲート電極を形成し、シリコン基板に所望の不純物を注入することにより、チャネル方向に沿ってチャネル領域を挟むようにシリコン基板中にソース領域とドレイン領域とを形成し、ソース領域及びドレイン領域の表面をアモルファス化することにより、それぞれの表面に不純物を含むアモルファス領域を形成し、アモルファス領域の上にニッケル膜を形成し、マイクロ波を照射して、アモルファス領域とニッケル膜とを反応させてニッケルシリサイド膜を形成しつつ、アモルファス領域を固相成長させてアモルファス領域に含まれる不純物を活性化し、未反応のニッケル膜を除去する。 (もっと読む)


【課題】コンタクトホールの一部が素子分離領域上に配置された構造の半導体装置において、短絡及び接合漏れ電流の増大を抑制する。
【解決手段】半導体装置50は、半導体基板10における活性領域10aを取り囲むように形成された溝15bに素子分離絶縁膜15aが埋め込まれた素子分離領域15と、活性領域10aに形成された不純物領域26と、半導体基板10上を覆う層間絶縁膜28と、層間絶縁膜28を貫通し、活性領域10a上及び素子分離領域15上に跨って形成されたコンタクトプラグ34と、少なくともコンタクトプラグ34下方において、不純物領域26上に形成された金属シリサイド膜33とを備える。素子分離領域15は、コンタクトプラグ34の下方において、素子分離絶縁膜15と活性領域10aとの間に設けられた保護絶縁膜35を更に有する。 (もっと読む)


【課題】応力等のストレスによる、素子の特性変動や、PN接合破壊などの信頼性劣化を防ぐことが可能な半導体装置、および半導体装置の製造方法を提供する。
【解決手段】サリサイド構造の半導体装置の高濃度ソース・ドレイン領域とゲート電極表面に形成される金属シリサイドを複数のアイランド状金属シリサイドからなる構成とする。これにより、全面に形成された金属シリサイド層よりも、シリコンと金属シリサイド層間の応力を緩和することができ、シリコンと金属シリサイド層間の応力等のストレスによる、素子の特性変動や、PN接合破壊などの信頼性劣化を防ぐことができる。 (もっと読む)


【課題】リセス等の形成に伴う処理で生じる残渣を適切に除去することができる化合物半導体装置の製造方法及び洗浄剤を提供する。
【解決手段】化合物半導体積層構造1を形成し、化合物半導体積層構造1の一部を除去して凹部4を形成し、洗浄剤を用いて凹部4内の洗浄を行う。洗浄剤は、凹部4内に存在する残渣と相溶する基材樹脂と溶媒とを含む。 (もっと読む)


【課題】新規なDTMOSトランジスタの製造方法を提供する。
【解決手段】半導体装置の製造方法は、第1領域と、第1領域に接続しこれより幅狭の第2領域と、第2領域に接続しこれより幅狭の第3領域とを含む半導体領域の画定工程、半導体領域に第1導電型不純物でウェル領域を形成する工程、ウェル領域上へのゲート絶縁膜形成工程、第3領域を幅方向に横断する第1部と、第1部から第1領域上に延びた第2部とを含むゲート電極を形成する工程、ゲート電極側面に、第2領域の一部を覆い他の一部を露出させるサイドウォールを形成する工程、第1領域及び第2領域の他の一部にゲート電極及びサイドウォールをマスクとし第2導電型不純物を注入する工程、熱処理による第2導電型不純物拡散工程、サイドウォールの一部を薬液で除去する工程、第1領域及び第2領域の他の一部へのシリサイド層形成工程を有する。 (もっと読む)


【課題】金属半導体化合物電極の界面抵抗を低減する半導体装置の製造方法を提供する。
【解決手段】実施の形態によればn型半導体上に硫黄を含有する硫黄含有膜を堆積し、硫黄含有膜上に第1の金属を含有する第1の金属膜を堆積し、熱処理によりn型半導体と第1の金属膜を反応させて金属半導体化合物膜を形成するとともに、n型半導体と金属半導体化合物膜との界面に硫黄を導入することを特徴とする半導体装置の製造方法である。 (もっと読む)


【課題】 本発明は上述の問題点を解決するためのもので、本発明の目的は、ソースとドレインに低い電子障壁を誘導するためにショットキー接触を有するITO透明電極を蒸着する窒化物半導体MOSFET及びその製造方法を提供することにある。
【解決手段】 窒化物半導体MOSFET及びその製造方法が提供される。本窒化物半導体MOSFETの製造方法は、単結晶シリコン基板上に有機金属化学蒸着器(MOCVD)を用いて緩衝層を蒸着し、緩衝層の上に窒化物半導体薄膜を形成し、窒化物半導体薄膜に硫化アンモニウムを処理し、硫化アンモニウムを処理した後、窒化物半導体薄膜の上にITOを用いて電極を形成し、電極を覆い、前記窒化物半導体薄膜の上にゲート誘電体を形成し、ゲート誘電体の上にITOを蒸着してゲート電極を形成する。これにより、窒化物半導体がエンハンスメントモードで動作することにより、漏れ電流及び出力消耗を減少させることができ、センサと集積化を簡単に実現することができる。 (もっと読む)


【課題】ゲート誘電体の上に複数のシリサイド金属ゲートが作製される相補型金属酸化物半導体集積化プロセスを提供する。
【解決手段】形成されるシリサイド金属ゲート相の変化を生じさせるポリSiゲートスタック高さの変化という欠点のないCMOSシリサイド金属ゲート集積化手法が提供される。集積化手法は、プロセスの複雑さ最小限に保ち、それによって、CMOSトランジスタの製造コストを増加させない。 (もっと読む)


【課題】ストレッサ膜を有する半導体装置及びその製造方法に関し、ストレッサ膜からの応力を効率よくチャネル領域に印加してMISFETの電流駆動能力を向上しうる半導体装置及びその製造方法を提供する。
【解決手段】半導体基板に、素子領域を画定する素子分離絶縁膜を形成し、素子領域上に、ゲート絶縁膜を介してゲート電極を形成し、ゲート電極の両側の半導体基板内にソース/ドレイン領域を形成し、ゲート電極及びソース/ドレイン領域が形成された半導体基板上に第1の絶縁膜を形成し、素子分離絶縁膜の端部に生じた窪み内に第1の絶縁膜が残存するように第1の絶縁膜をエッチバックし、半導体基板上に、半導体基板の表面に平行な方向に応力を印加する第2の絶縁膜を形成する。 (もっと読む)


【課題】Cu系合金配線膜と半導体層との間に通常設けられるバリアメタル層を省略しても優れた低接触抵抗を発揮し得、さらに密着性に優れた配線構造を提供する。
【解決手段】本発明の配線構造は、基板の上に、基板側から順に、半導体層と、Cu合金層とを備えた配線構造であって、前記半導体層と前記Cu合金層との間に、基板側から順に、窒素、炭素、フッ素、および酸素よりなる群から選択される少なくとも一種の元素を含有する(N、C、F、O)層と、CuおよびSiを含むCu−Si拡散層との積層構造を含んでおり、前記(N、C、F、O)層を構成する窒素、炭素、フッ素および酸素のいずれかの元素は前記半導体層のSiと結合しており、前記Cu合金層は、Cu−X合金層(第一層)と第二層とを含む積層構造である。 (もっと読む)


【課題】ゲート電極と第1のコンタクトプラグとが接触する接触幅を充分に確保する。
【解決手段】半導体基板10の上に、エッチングストッパー膜17、第1の層間絶縁膜18及び第2の層間絶縁膜19を順次形成する。次に、第1,第2の層間絶縁膜18,19を貫通し、且つ、エッチングストッパー膜17を露出する第1のホール23を形成する。次に、酸素ガスを含むプラズマを用いたプラズマ処理により、第2の層間絶縁膜19における第1のホール23の側壁に露出する部分を変質して、第1の変質層25を形成する。次に、第1の変質層25を除去して、第2のホール27を形成する。次に、エッチングストッパー膜17における第2のホール27に露出する部分を除去して、第1のコンタクトホール29を形成する。次に、第1のコンタクトホール29に、第1のコンタクトプラグ32Aを形成する。 (もっと読む)


【課題】シリサイドプロセス前にイオン注入を行う半導体装置であって、より確実にMISFETにおけるリーク電流の抑制が図れるものを実現する。
【解決手段】マスク層RMによりPチャネル型MISFETを覆いつつ、Nチャネル型MISFETのN型ソース領域およびN型ドレイン領域に、イオン(F,Si,C,Ge,Ne,Ar,Krのうち少なくとも一種類を含む)を注入する。その後、Nチャネル型MISFETおよびPチャネル型MISFETの各ゲート電極、ソース領域およびドレイン領域にシリサイド化(Ni,Ti,Co,Pd,Pt,Erのうち少なくとも一種類を含む)を行う。これにより、Pチャネル型MISFETにおいてドレイン−ボディ間オフリーク電流を劣化させること無く、Nチャネル型MISFETにおいてドレイン−ボディ間オフリーク電流(基板リーク電流)の抑制が図れる。 (もっと読む)


【課題】ゲートリセス構造を採用してノーマリーオフ動作を可能とするも、バラツキの小さい安定した閾値を有し、十分な高耐圧を実現する信頼性の高い化合物半導体装置を実現する。
【解決手段】電子走行層3と電子供給層4との間にi−AlNからなる中間層5を形成し、キャップ構造7上のゲート電極の形成予定部位に中間層5をエッチングストッパとして用いて開口11aを形成した後、中間層5の開口11aに位置整合する部位に熱リン酸を用いたウェットエッチングにより開口11bを形成して、開口11a,11bからなる開口11をゲート絶縁膜12を介して下部が埋め込み、上部がキャップ構造7上方に突出するゲート電極13を形成する。 (もっと読む)


【課題】オン抵抗が低いIII族窒化物系電界効果トランジスタおよびその製造方法を提供する。
【解決手段】本発明のIII族窒化物系電界効果トランジスタは、下地半導体層上に第1窒化物半導体層および第2窒化物半導体層が順次積層された窒化物半導体積層体と、窒化物半導体積層体の上面に接する、ソース電極およびドレイン電極と、ソース電極およびドレイン電極の間の窒化物半導体積層体における、第1窒化物半導体層の一部および第2窒化物半導体層が形成されていない領域であるリセス領域と、リセス領域上に形成された窒化物半導体膜と、リセス領域の内壁面、および第2窒化物半導体層の上面に形成された絶縁膜と、絶縁膜上に形成されたゲート電極とを有し、第2窒化物半導体層は、第1窒化物半導体層に比べて広い禁制帯幅を有し、窒化物半導体膜の上面は、第1窒化物半導体層の上面よりも低いことを特徴とする。 (もっと読む)


【課題】配線抵抗値の異常やショートの抑制。
【解決手段】層間絶縁膜18にレジストパターン19を設けたうえで層間絶縁膜18をドライエッチングする工程の後と、レジストパターン19を除去した状態のストレッサーSiN膜17をさらにドライエッチングする工程の後とのうちのいずれかの時点で、半導体ウェーハ102を窒素プラズマ処理する。 (もっと読む)


【解決手段】
洗練されたトランジスタ要素を形成するための製造プロセスの間、それぞれの金属シリサイド領域を形成するのに先立つ共通のエッチングシーケンスにおいて、ゲート高さが減少させられてよく、そして凹型のドレイン及びソース構造もまた得られてよい。対応する側壁スペーサ構造はエッチングシーケンスの間に維持され得るので、ゲート電極におけるシリサイド化プロセスの可制御性及び均一性を高めることができ、それにより、低減された程度のスレッショルドばらつきを得ることができる。更に、凹型のドレイン及びソース構造が、全体的な直列抵抗の低減及び応力転移効率の増大をもたらすことができる。 (もっと読む)


【課題】容易にコンタクト抵抗を低減することができる半導体装置の製造方法を提供する。
【解決手段】半導体基板1上に多結晶シリコン膜を形成し、その後、この多結晶シリコン膜の表面をエッチングする。そして、エッチングされた多結晶シリコン膜をシリサイド化して、シリサイド膜12を形成する。更に、シリサイド膜12に接するプラグ23s、23d及び23gを層間絶縁膜21内に形成する。 (もっと読む)


【課題】Geを含有する半導体基板に効果的な洗浄方法が適用された半導体装置の製造方法を提供する。
【解決手段】Geを含有する半導体基板を、HClガス、HBrガスまたはHIガスの少なくとも一種を含むハロゲン化ガスで洗浄処理を行うことを特徴とする半導体装置の製造方法。Geを含有する半導体基板を、75℃以上110℃以下のHCl溶液で洗浄処理を行うことを特徴とする半導体装置の製造方法。例えば、MISFETのゲート絶縁膜の前処理、ソース・ドレイン電極形成の前処理、コンタクトの金属プラグ形成の前処理に適用される。 (もっと読む)


【課題】純AlまたはAl合金のAl系合金配線と半導体層との間のバリアメタル層を省略することが可能なダイレクトコンタクト技術であって、幅広いプロセスマージンの範囲においてAl系合金配線を半導体層に直接かつ確実に接続することができる技術を提供する。
【解決手段】本発明の配線構造は、基板の上に、基板側から順に、半導体層と、純AlまたはAl合金のAl系合金膜とを備えた配線構造であって、前記半導体層と前記Al系合金膜との間に、基板側から順に、窒素、炭素、およびフッ素よりなる群から選択される少なくとも一種の元素を含有する(N、C、F)層と、AlおよびSiを含むAl−Si拡散層との積層構造を含んでおり、且つ、前記(N、C、F)層を構成する窒素、炭素、およびフッ素のいずれかの元素は、前記半導体層のSiと結合している。 (もっと読む)


【課題】シリサイドブロック層の除去方法を工夫することで、良好な抵抗値を持つシリサイド層を形成することができる半導体装置の製造方法を得る。
【解決手段】シリサイドブロック層10を反応性イオンエッチングで除去する際、反応性イオンエッチングの終点検出前よりも反応性イオンエッチングの終点検出後のほうが、イオン引き込み用のバイアス高周波電力の電圧振幅値であるVppが高くなるように設定する。 (もっと読む)


1 - 20 / 102