説明

Fターム[5F140BK34]の内容

Fターム[5F140BK34]の下位に属するFターム

雰囲気 (113)

Fターム[5F140BK34]に分類される特許

1 - 20 / 1,109




【課題】トンネルFETのオン電流の劣化を抑制しつつ、オフ電流を低減することが可能な半導体装置を提供する。
【解決手段】実施形態によれば、半導体装置は、溝が形成された基板と、前記基板上の前記溝に隣接する位置にゲート絶縁膜を介して形成され、前記溝の反対側に位置する第1側面と、前記溝側に位置する第2側面とを有するゲート電極とを備える。さらに、前記装置は、前記ゲート電極の前記第1側面に形成された第1の側壁絶縁膜と、前記ゲート電極の前記第2側面と前記溝の側面に形成された第2の側壁絶縁膜とを備える。さらに、前記装置は、前記基板内において、前記ゲート電極の前記第1側面に対し前記第1の側壁絶縁膜側に形成された、第1導電型のソース領域と、前記基板内において、前記ゲート電極の前記第2側面と前記溝の側面に対し前記第2の側壁絶縁膜側に形成された、第2導電型のドレイン領域とを備える。 (もっと読む)


【課題】ゲート高さが低いため製造容易で、ゲート−コンタクト間の容量を抑制し、ゲート−コンタクト間の短絡を抑制した半導体装置を提供する。
【解決手段】半導体装置の製造方法は基板上にFin型半導体層を形成する。Fin型半導体層に交差するダミーゲートが形成される。Fin型半導体層にソースおよびドレインが形成される。ダミーゲート上に層間絶縁膜を堆積した後、ダミーゲートの上面を露出させる。ダミーゲートを除去してゲートトレンチを形成する。ゲートトレンチ内のFin型半導体層の上部をリセスする。ゲートトレンチ内のFin型半導体層の表面にゲート絶縁膜を形成する。ゲート電極をゲートトレンチ内に充填する。ゲート電極をエッチングバックすることによってゲート電極を形成する。ゲート電極の上面の高さはソースおよびドレインにおけるFin型半導体層の上面の高さ以下かつゲートトレンチ内のFin型半導体層の上面の高さ以上である。 (もっと読む)


【課題】電界効果トランジスタを有する半導体装置のトランジスタ性能を向上させることのできる技術を提供する。
【解決手段】ゲート絶縁膜5およびゲート電極6n,6pの側面にサイドウォール9を形成した後、サイドウォール9の両側の半導体基板1に不純物をイオン注入して不純物領域を形成する。続いて、半導体基板1の主面上に第1絶縁膜14、第2絶縁膜15、および第3絶縁膜16を順次形成した後、イオン注入された上記不純物を活性化する熱処理を行う。ここで、第1絶縁膜14は、第2絶縁膜15よりも被覆性のよい膜であり、かつ、第2絶縁膜15とエッチング選択比が異なる膜である。第2絶縁膜15は、第1絶縁膜14よりも水素の拡散を阻止する機能が高い膜である。第3絶縁膜16は、第1絶縁膜14および第2絶縁膜15よりも内部応力の変化が大きい膜である。 (もっと読む)


【課題】トンネルトランジスタのトンネルオフリーク電流を低減することが可能な半導体装置を提供する。
【解決手段】実施形態によれば、半導体装置は、基板と、前記基板上にゲート絶縁膜を介して形成されたゲート電極とを備える。さらに、前記装置は、前記基板内に前記ゲート電極を挟むように形成された第1導電型のソース領域、および前記第1導電型とは逆導電型の第2導電型のドレイン領域を備える。さらに、前記ゲート電極は、前記ゲート電極内の前記ソース領域側に形成された前記第1導電型の第1領域と、前記ゲート電極内の前記ドレイン領域側に形成され、前記第1領域に比べて、前記第1導電型の不純物濃度から前記第2導電型の不純物濃度を引いた値が低い第2領域とを有する。 (もっと読む)


【課題】 横方向に可変の仕事関数を有するゲート電極を含む半導体構造体を提供する。
【解決手段】 CMOS構造体などの半導体構造体が、横方向に可変の仕事関数を有するゲート電極を含む。横方向に可変の仕事関数を有するゲート電極は、角度傾斜イオン注入法又は逐次積層法を用いて形成することができる。横方向に可変の仕事関数を有するゲート電極は、非ドープ・チャネルの電界効果トランジスタ・デバイスに向上した電気的性能をもたらす。 (もっと読む)


【課題】縦型トランジスタのソース又はドレイン用の拡散層を形成するにあたって形成されるシリコン膜に表面凹凸を発生させない半導体装置の製造方法を提供する。
【解決手段】複数の半導体ピラーを形成する工程と、隣り合う前記半導体ピラーで挟まれた溝の側面を覆うように絶縁膜を形成する工程と、前記絶縁膜の前記溝の底部に近い領域に側面開口を形成する工程と、前記溝の内部を覆うようにシリコン膜からなる被覆膜を形成する工程と、前記被覆膜上に前記半導体ピラー内へ拡散させる不純物で構成された不純物層を形成する工程と、前記不純物を、前記側面開口を塞ぐように形成されている前記被覆膜を通して前記半導体ピラー内に熱拡散させてソース又はドレイン用の拡散層を形成する工程と、を含む。前記被覆膜の成膜温度を510℃より高く度550℃未満の範囲とすることにより、非晶質状態のシリコン膜を形成する。 (もっと読む)


【課題】半導体装置の信頼性を向上させることができる技術を提供する。特に、ゲート電極をメタル材料で構成する電界効果トランジスタを有する半導体装置において、安定した動作特性を得ることのできる技術を提供する。
【解決手段】レジストパターン12をマスクとしたドライエッチングにより、ゲート電極13nまたはゲート電極13pを形成した後、酸素および水素を含むプラズマ雰囲気中においてアッシング処理を施すことにより、レジストパターン12を除去し、ゲート電極13nまたはゲート電極13pの側面に付着した反応生成物14を酸化する。その後、洗浄処理を施して、反応生成物14を除去する。 (もっと読む)


【課題】MOSトランジスタの特性のばらつきを低減するために有利な技術を提供する。
【解決手段】MOSトランジスタを含む半導体装置の製造方法は、半導体基板の上に形成された第1絶縁膜の上にゲート電極材料層を形成する工程と、前記ゲート電極材料層の上にエッチングマスクを形成する工程と、前記ゲート電極材料層をパターニングすることによりゲート電極を形成する工程と、前記ゲート電極が形成された前記半導体基板の上に第2絶縁膜を形成する工程とを含み、前記ゲート電極を形成する工程では、前記ゲート電極材料層がパターニングされるとともに、少なくとも、前記ゲート電極の側面の下部と、前記第1絶縁膜のうち前記側面に隣接する部分とを保護する保護膜が形成され、前記第2絶縁膜を形成する工程では、前記保護膜を覆うように前記第2絶縁膜が形成される。 (もっと読む)


【課題】本発明は、シリコン層上に、抵抗値が低く、かつ平坦性の良好なニッケルモノシリサイド層を形成可能な半導体装置の製造方法を提供することを課題とする。
【解決手段】基板に形成されたシリコン層を覆ように白金を含むニッケル層を堆積する工程であって、シリコン層に近い部分では遠い部分と比較して結晶性が低くなるように、白金を含むニッケル層を堆積する工程S05と、基板を加熱することで、シリコン層と白金を含むニッケル層との界面にニッケルモノシリサイド層を形成する工程S07と、を有する。 (もっと読む)


【課題】新規な構造のコンタクトプラグを有する半導体装置を提供する。
【解決手段】
半導体装置は、半導体基板と、半導体基板に形成され、ソース/ドレイン領域及びゲート電極を有するトランジスタと、トランジスタのソース/ドレイン領域及びゲート電極を覆う絶縁膜と、絶縁膜中に形成され、トランジスタのソース/ドレイン領域またはゲート電極に接されるコンタクトプラグとを有し、コンタクトプラグは、絶縁膜の厚さ方向に延在しトランジスタのソース/ドレイン領域またはゲート電極に接触する柱部と、柱部の上部から絶縁膜の表面と平行な方向に張り出し上面が平坦化された鍔部とを有する。 (もっと読む)


【課題】金属シリサイド層の異常成長を防止する。
【解決手段】半導体基板1にゲート絶縁膜5、ゲート電極6a,6b、ソース・ドレイン用のn型半導体領域7bおよびp型半導体領域8bを形成する。それから、サリサイド技術によりゲート電極6a,6bおよびソース・ドレイン領域上に金属シリサイド層13を形成する。そして、金属シリサイド層13の表面を還元性ガスのプラズマで処理してから、半導体基板1を大気中にさらすことなく、金属シリサイド層13上を含む半導体基板1上に窒化シリコンからなる絶縁膜21をプラズマCVD法で堆積させる。 (もっと読む)


【課題】FinFETの隣接するフィン同士のショートを回避しつつ、エピタキシャル層の表面積を広く確保する。
【解決手段】実施形態によれば、半導体装置は、半導体基板と、前記半導体基板の表面に形成され、(110)面である側面を有するフィンとを備える。さらに、前記装置は、前記フィンの側面に形成されたゲート絶縁膜と、前記フィンの側面および上面に、前記ゲート絶縁膜を介して形成されたゲート電極とを備える。さらに、前記装置は、前記フィンの側面に、フィン高さ方向に沿って順に形成された複数のエピタキシャル層を備える。 (もっと読む)


【課題】高耐圧MOSFETの耐圧を向上させる。
【解決手段】MOSFETのドレイン領域を構成するLDD層6内に、LDD層6よりも不純物濃度層が低いN−−層11を形成して、チャネル領域側のドレイン領域端部の不純物濃度を低下させる。また、ソース領域側のLDD層7をLDD層6よりも浅い接合深さで、且つLDD層6よりも低い不純物濃度で形成する。これにより、オン状態およびオフ状態のいずれの状態においてもドレイン領域の電界を緩和し、インパクトイオンおよびパンチスルーの発生を防ぐ。 (もっと読む)


【課題】レジストパターンの下地層への悪影響を及ぼすことなくスカムを最適に除去する半導体装置の製造方法を提供する。
【解決手段】半導体基板1の上に酸化膜5cを形成し、前記酸化膜5c上にフォトレジスト8を塗布し、前記フォトレジスト8を露光し、露光された前記フォトレジスト8を現像することにより前記フォトレジス8トに開口部8aを形成し、前記フォトレジスト8をマスクとして、前記酸化膜5cを酸素プラズマ処理し、前記酸素プラズマ処理の後、前記酸化膜5cと前記フォトレジスト8に希釈フッ酸を供給し、前記希釈フッ酸を供給する工程の後、前記フォトレジスト8をマスクとして前記酸化膜5cを通して記半導体基板1に一導電型不純物をイオン注入する工程を含む。 (もっと読む)


【課題】 寄生抵抗を低減可能な半導体装置を提供する。
【解決手段】 半導体装置は、第1半導体層の表面に沿って延びる突起(2)を有する第1半導体層(1)を含む。ゲート電極(12)は、突起の表面をゲート絶縁膜を挟んで覆う。第2半導体層(28, 45)は、突起のゲート電極により覆われる部分と別の部分の側面上に形成され、溝(31, 52)を有する。ソース/ドレイン領域(30, 46)は、第2半導体層内に形成される。シリサイド膜(33)は、溝内の表面を含め第2半導体層の表面を覆う。導電性のプラグ(37)は、シリサイド膜と接する。 (もっと読む)


【課題】トランジスタの集積度が高い半導体装置及びその製造方法を提供する。
【解決手段】実施形態に係る半導体装置は、第1領域において上面に第1方向に延びる複数本のフィンが形成された半導体基板と、前記第1方向に対して交差した第2方向に延び、前記フィンを跨ぐ第1ゲート電極と、前記フィンと前記第1ゲート電極との間に設けられた第1ゲート絶縁膜と、前記第2領域において前記半導体基板上に設けられた第2ゲート電極と、前記半導体基板と前記第2ゲート電極との間に設けられた第2ゲート絶縁膜と、を備える。そして、前記第1ゲート電極の層構造は、前記第2ゲート電極の層構造とは異なる。 (もっと読む)


【課題】higher-k材料であるチタン酸化膜の半導体基板との界面を安定化でき、さらなる微細化に対応できるゲート構造を実現できるようにする。
【解決手段】半導体装置は、半導体基板1の上に形成されたゲート絶縁膜と、該ゲート絶縁膜の上に形成されたゲート電極とを備えている。ゲート絶縁膜は、アナターゼ型酸化チタンを主成分とする高誘電率絶縁膜5であり、ゲート電極は、第1の金属膜6又は第2の金属膜8を含む導電膜から構成されている。 (もっと読む)


【課題】ショットキー障壁の高さおよび幅を容易に制御すると共に寄生抵抗が低く、且つ短チャネル効果を効果的に抑制する。
【解決手段】金属ソース・ドレイン電極(ニッケルシリサイド)6とP型シリコン基板1との間に、セシウム含有領域5を形成している。こうして、金属ソース・ドレイン電極6近傍のセシウムをイオン化して正孔に対するエネルギー障壁高さを大きくし、金属ソース・ドレイン電極6とP型シリコン基板1との間のリーク電流を著しく低減する。また、チャネルと金属ソース・ドレイン電極6との間のショットキー障壁の高さおよび幅を実効的に小さくして寄生抵抗を著しく低減する。したがって、金属シリサイドの厚み(深さ)をイオン注入による制約なしに決定でき、極めて浅いソース・ドレインを形成して良好な短チャネル効果特性を得ることができる。 (もっと読む)


1 - 20 / 1,109