説明

Fターム[5F140BK37]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ソース・ドレイン領域、電極及びSD近傍領域の製造 (13,929) | ソース・ドレイン電極形成後の処理 (1,157)

Fターム[5F140BK37]の下位に属するFターム

熱処理 (373)
エッチング (743)

Fターム[5F140BK37]に分類される特許

1 - 20 / 41


【課題】高集積化することができる半導体装置、金属膜の製造方法及び半導体装置の製造方法を提供することである。
【解決手段】実施形態に係る半導体装置は、半導体基板と、前記半導体基板に形成され、ヒ素を含むヒ素拡散層と、前記ヒ素拡散層上に形成された金属膜と、を備える。前記金属膜は、タングステン、チタン、ルテニウム、ハフニウム及びタンタルからなる群より選択された少なくとも1種の金属、並びにヒ素を含む。 (もっと読む)


【課題】良好なノーマリ・オフ動作を可能とすることに加え、アバランシェ耐量が大きく、外部のダイオードを接続することを要せず、確実に安定動作を得ることができる信頼性の高い高耐圧のHEMTを得る。
【解決手段】化合物半導体積層構造2に形成された電極用リセス2Cを、ゲート絶縁膜6を介して電極材料で埋め込むようにゲート電極7を形成すると共に、化合物半導体積層構造2に形成された電極用リセス2Dを、少なくとも電極用リセス2Dの底面で化合物半導体積層構造2と直接的に接するように電極材料で埋め込み、化合物半導体積層構造2とショットキー接触するフィールドプレート電極8を形成する。 (もっと読む)


【課題】製造工程を簡略化することの可能な半導体装置の製造方法を提供する。
【解決手段】半導体基板11上に、ダミーゲート電極及びダミーコンタクトプラグの側面を覆う層間絶縁膜16を形成後、ダミーゲート電極、ダミーコンタクトプラグを選択的に除去して、ゲート電極形成用溝17及びコンタクト孔18を同時に形成し、次いで、ゲート電極形成用溝17内、コンタクト孔18内、及び層間絶縁膜16の上面を覆う高誘電率絶縁膜42を成膜し、次いで、斜めイオン注入法により、ゲート電極形成用溝17の下部17Aに形成された高誘電率絶縁膜42にイオン注入しないように、高誘電率絶縁膜42を介して、半導体基板に不純物拡散領域15を形成し、次いで、イオン注入された高誘電率絶縁膜42を選択的に除去することで、ゲート電極形成用溝の下部にゲート絶縁膜を形成し、かつコンタクト孔から不純物拡散領域15の上面を露出させる。 (もっと読む)


【課題】オン抵抗の低いパワーMOS等の半導体装置を提供する。
【解決手段】ゲート酸化膜を介しゲート電極22を形成するゲート電極形成工程と、ゲート電極間よりも広い第1の開口部を有する第1のレジストパターンを形成する工程と、第1の開口部において露出している表面に第1の導電型の不純物元素をイオン注入する第1のイオン注入工程と、ゲート電極間よりも狭い第2の開口部31を有する層間絶縁膜30を形成する層間絶縁膜形成工程と、第2の開口部よりも広い第3の開口部を有する第2のレジストパターン32を形成する工程と、第3の開口部33において露出している表面に第2の導電型の不純物元素をイオン注入する第2のイオン注入工程と、を有し、第2のイオン注入工程において注入される第2の導電型の不純物元素の濃度は、第1のイオン注入工程において注入される第1の導電型の不純物元素の濃度の2倍以上であることを特徴とする。 (もっと読む)


金属−絶縁体−半導体電界効果トランジスタ(MISFET)は、第1の導電型の離間されたソース領域とドレイン領域とをその中に有するSiC層を含む。第1のゲート絶縁層は、SiC層上にあり、SiC層との界面に沿って、ソース領域の多数キャリアと同じ極性の正味の電荷を有する。ゲートコンタクトは、ソース領域とドレイン領域との間のSiC層のチャネル領域の上方の、第1のゲート絶縁層上にある。第1のゲート絶縁層とSiC層との間の界面に沿った正味の電荷は、SiC層内のソース領域とドレイン領域との間のチャネル領域の隣接部分の多数キャリアを空乏化することができ、そのことにより、MISFETの閾値電圧を上昇させ、及び/又は内部の電子移動度を高めることができる。 (もっと読む)


【課題】同一の工程で、同一半導体基板上に異なる構造のトランジスタを形成する半導体装置の提供。
【解決手段】半導体基板上に第一及び第二のゲート電極40,41を形成する工程と、第一のゲート電極の側壁面に第一の絶縁層122を形成するとともに、第二のゲート電極のゲート幅方向両側の半導体基板上にエピタキシャル成長層9aを形成する工程と、第二のゲート電極の側壁面に第二の絶縁層を形成する工程と、第一の絶縁層及び第二の絶縁層を覆うように第三の絶縁層を形成する工程と、第二の絶縁層を覆う第三の絶縁層を除去する工程と、第一のゲート電極のゲート幅方向両側の半導体基板及びエピタキシャル成長層にそれぞれ不純物を拡散させて、第一及び第二の不純物拡散領域6,8を形成する工程と、第一及び第二の不純物拡散領域にコンタクトプラグ12,15を接続させる工程と、を具備してなることを特徴とする半導体装置の製造方法。 (もっと読む)


【課題】純CuまたはCu合金のCu系合金配線と半導体層との間のバリアメタル層を省略することが可能なダイレクトコンタクト技術であって、幅広いプロセスマージンの範囲においてCu系合金配線を半導体層に直接かつ確実に接続することができる技術を提供する。
【解決手段】本発明の配線構造は、基板の上に、基板側から順に、半導体層と、純CuまたはCu合金のCu系合金膜とを備えた配線構造であって、前記半導体層と前記Cu系合金膜との間に、基板側から順に、窒素、炭素、フッ素、および酸素よりなる群から選択される少なくとも一種の元素を含有する(N、C、F、O)層と、CuおよびSiを含むCu−Si拡散層との積層構造を含んでおり、且つ、前記(N、C、F、O)層を構成する窒素、炭素、フッ素、および酸素のいずれかの元素は、前記半導体層のSiと結合している。 (もっと読む)


【課題】低抵抗・高耐圧で電流コラプス現象の影響の小さいGaN系電界効果トランジスタの製造方法を提供する。
【解決手段】 GaN系電界効果トランジスタの製造方法は、基板101上にAlN層102、バッファ層103、チャネル層104、ドリフト層105および電子供給層106をエピタキシャル成長させる工程と、リセス部108を形成する工程と、アロイ工程におけるアニール時に電子供給層106を保護する保護膜113を、リセス部108の内表面、電子供給層106、ソース電極109、ドレイン電極110および素子分離部分130上に形成する工程と、オーミック接触を得るためのアニールを行なうアロイ工程と、保護膜113を除去し、ゲート絶縁膜を、リセス部108の内表面、電子供給層106、ソース電極109、ドレイン電極110および素子分離部分130上に形成する工程と、リセス部108のゲート絶縁膜上にゲート電極を形成する工程とを備える。 (もっと読む)


【課題】王水等の薬液によるシリサイド膜表面における腐食発生を抑制し、良好なPt含有シリサイド膜を形成する半導体装置の製造方法と、それを実現する半導体装置の製造装置とを提供する。
【解決手段】半導体装置の製造方法は、半導体層を有する基板上または基板上に形成された導電膜上に、貴金属を含む合金膜を形成する工程(a)と、基板に対して熱処理を行って貴金属とシリコンとを反応させ、基板上または導電膜上に貴金属を含むシリサイド膜を形成する工程(b)と、工程(b)の後、第1の薬液を用いて未反応記合金膜を除去する工程(c)と、基板を酸化性雰囲気に曝すことによって、貴金属の残渣の下に位置する部分を含むシリサイド膜の上面上にシリコン酸化膜を形成する工程(d)と、第2の薬液を用いて貴金属の残渣を溶解する工程(e)とを備えている。 (もっと読む)


【課題】カーボンナノチューブを特性毎に分別する。
【解決手段】本発明の例に関わるカーボンナノチューブの分別装置は、第1の磁気特性を有する第1のカーボンナノチューブSCNTと第2の磁気特性を有する第2のカーボンナノチューブMCNTとが共通に導入される導入部2と、第1及び第2のカーボンナノチューブSCNT,MCNTをそれぞれ回収する第1及び第2の回収部4A,4Bと、第1及び第2のカーボンナノチューブSCNT,MCNTを導入部2から回収部4A,4Bまで搬送する搬送部3と、搬送部3に隣接して配置され、カーボンナノチューブSCNT,MCNTに対して磁場Hを印加する磁場発生部5とを具備し、第1の磁気特性と磁場Hとの相互作用によって、第1のカーボンナノチューブSCNTと第2のカーボンナノチューブMCNTとを分別する。 (もっと読む)


【課題】半導体基板上に設けられるNiPtSi電極の熱安定性を向上させる半導体装置および半導体装置の製造方法を提供する。
【解決手段】半導体基板と、この半導体基板中のチャネル領域と、チャネル領域上に形成されたゲート絶縁膜と、ゲート絶縁膜上に形成されたゲート電極と、チャネル領域の両側に形成され、NiおよびPtを主成分とする金属半導体化合物層からなるソース/ドレイン電極とを備え、金属半導体化合物層と半導体基板との界面において、金属半導体化合物層の単一の結晶粒と半導体基板との境界部の最大Pt濃度が、界面の平均Pt濃度よりも高いことを特徴とする半導体装置および半導体装置の製造方法。 (もっと読む)


【課題】半導体基板上に設けられる金属半導体化合物電極の界面抵抗を低減する半導体装置およびその製造方法を提供する。
【解決手段】半導体基板と、半導体基板上に形成され、Sを1×1020atoms/cm以上含有する界面層と、界面層上に形成され、略全域にSを1×1020atoms/cm以上含有する金属半導体化合物層と、金属半導体化合物層上の金属電極を有することを特徴とする半導体装置。半導体基板上に金属膜を堆積し、第1の熱処理により、金属膜を半導体基板と反応させて、金属半導体化合物層を形成し、金属半導体化合物層に、飛程が金属半導体化合物層の膜厚未満となる条件でSをイオン注入し、第2の熱処理により、Sを再配置することを特徴とする半導体装置の製造方法。 (もっと読む)


【課題】所望のシリサイド膜を形成することが可能な半導体装置の製造方法を提供する。
【解決手段】半導体基板10に形成されたシリコンを主成分とするソース・ドレイン拡散層3上、および半導体基板に形成されソース・ドレイン拡散層に隣接する素子分離絶縁膜の上に、金属を堆積して金属膜を形成し、第1の加熱温度の第1の加熱処理によりソース・ドレイン拡散層のシリコンとソース・ドレイン拡散層上の金属とを反応させて、ソース・ドレイン拡散層の上部をシリサイド化してシリサイド膜106を形成し、シリサイド膜を酸化させないようにして、素子分離絶縁膜の上の金属膜の少なくとも表面を選択的に酸化して、金属酸化膜105を形成し、第1の加熱温度よりも高い第2の加熱温度の第2の加熱処理によりシリサイド膜のシリコンの濃度を増加させ、素子分離絶縁膜上の金属酸化膜および金属膜の未反応部分を選択的に除去する。 (もっと読む)


【課題】シリサイド層を設ける場所に応じて適切な特性を有するシリサイド層を備える半導体装置およびその製造方法を提供する。
【解決手段】本発明の一態様に係る半導体装置は、半導体基板と、前記半導体基板上にゲート絶縁膜を介して形成されたゲート電極と、前記ゲート電極上に形成された第1のシリサイド層と、前記ゲート電極下方の前記半導体基板内に形成されたチャネル領域と、前記半導体基板内の前記チャネル領域を挟んだ領域に形成されるソース・ドレイン領域と、前記ソース・ドレイン領域上に形成されて前記第1のシリサイド層よりも結晶粒径の平均値が小さい、または結晶粒内の組成境界数の平均値が多い第2のシリサイド層と、を有する。 (もっと読む)


【課題】 占有面積を拡大することなく特性バラツキの抑制を可能にする半導体装置及びその製造方法を提供する。
【解決手段】 低濃度P型の半導体基板1の上層にゲート酸化膜3を形成した後、ゲート酸化膜3上層にP型のゲート電極4を形成する。その後、ゲート酸化膜3及びゲート電極4をマスクとしてN型の不純物イオンを注入することで、N型のソース・ドレイン拡散領域6を複数離間形成する。その後、半導体基板1及びゲート電極4の上層に層間絶縁膜7を形成した後、各ソース・ドレイン拡散領域6及びゲート電極4夫々との電気的接続を確保する複数のコンタクトプラグ8を形成する。その後、所望の閾値電圧となるよう、コンタクトプラグ8を介してソース・ドレイン拡散領域6とゲート電極4の間に所定の高電圧を印加してゲート酸化膜3内に正電荷を注入する。 (もっと読む)


【課題】電極の接触抵抗の低減によって高性能化した半導体装置の製造方法および半導体装置を提供する。
【解決手段】半導体基板上にゲート絶縁膜を形成する工程と、ゲート絶縁膜上にゲート電極を形成する工程と、半導体基板上に第1の金属を堆積する工程と、第1の熱処理により第1の金属と半導体基板を反応させて、前記ゲート電極両側の前記半導体基板表面に金属半導体化合物層を形成する工程と、金属半導体化合物層中に、Siの原子量以上の質量を有するイオンをイオン注入する工程と、金属半導体化合物層上に第2の金属を堆積する工程と、第2の熱処理により、第2の金属を金属半導体化合物層中に拡散させることで、金属半導体化合物層と半導体基板の界面に、第2の金属を偏析させて界面層を形成する工程を有することを特徴とする半導体装置の製造方法。 (もっと読む)


【課題】金属シリサイド層の異常成長を防止する。
【解決手段】半導体基板1にゲート絶縁膜5、ゲート電極6a,6b、ソース・ドレイン用のn型半導体領域7bおよびp型半導体領域8bを形成する。それから、サリサイド技術によりゲート電極6a,6bおよびソース・ドレイン領域上に金属シリサイド層13を形成する。そして、金属シリサイド層13の表面を還元性ガスのプラズマで処理してから、半導体基板1を大気中にさらすことなく、金属シリサイド層13上を含む半導体基板1上に窒化シリコンからなる絶縁膜21をプラズマCVD法で堆積させる。 (もっと読む)


【課題】シリサイド膜上に形成されるシリコン窒化膜の膨れや剥離を抑えることができる半導体装置の製造方法を提供する。
【解決手段】表面にシリサイド膜が形成された領域を有する半導体基板を、酸素元素を含むガス雰囲気中でプラズマ処理してシリサイド膜の上に酸化膜を形成する工程と、その酸化膜を形成した後、半導体基板の表面を覆うシリコン窒化膜を形成する工程と、を備えた。 (もっと読む)


【課題】LCDドライバなどで小型化によるプラグの高抵抗化を抑制し、かつ、高耐圧MISFETのゲート電極と配線間の耐圧不良を改善できる技術を提供する。
【解決手段】LCDドライバにおいて、高耐圧MISFETでは、電界緩和用絶縁領域3上にゲート電極10bの端部が乗り上げている。そして、高耐圧MISFET上の1層目の層間絶縁膜上にソース配線あるいはドレイン配線となる配線HL1が形成されている。このとき、半導体基板1Sとゲート絶縁膜8の界面からゲート電極10bの上部までの距離をa、ゲート電極10bの上部から配線HL1が形成されている層間絶縁膜の上部までの距離をbとすると、a>bとなっている。このように構成されている高耐圧MISFETにおいて、配線HL1は、高耐圧MISFETのゲート電極10bと平面的な重なりを有しないように配置されている。 (もっと読む)


【課題】サリサイドプロセスで金属シリサイド層を形成した半導体装置の性能を向上させる。
【解決手段】ゲート絶縁膜7、ゲート電極8a,8b、ソース・ドレイン用のn型半導体領域9b及びp型半導体領域10bを形成してから、半導体基板1上に金属膜及びバリア膜を形成し、第1の熱処理を行って金属膜とゲート電極8a,8b、n型半導体領域9bおよびp型半導体領域10bとを反応させることで、金属膜を構成する金属元素MのモノシリサイドMSiからなる金属シリサイド層41を形成する。その後、バリア膜および未反応の金属膜を除去してから、第2の熱処理を行い金属シリサイド層41を安定化させる。これ以降、半導体基板1の温度が第2の熱処理の熱処理温度よりも高温となるような処理は行わない。第2の熱処理の熱処理温度は、金属元素MのダイシリサイドMSiの格子サイズと半導体基板1の格子サイズが一致する温度よりも低くする。 (もっと読む)


1 - 20 / 41