説明

Fターム[5F140CC08]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | 層間膜、保護膜 (4,863) | 材料 (2,741) | SiN (860)

Fターム[5F140CC08]に分類される特許

1 - 20 / 860








【課題】耐圧を向上できる電界効果トランジスタを提供する。
【解決手段】GaN系HFETは、ゲート絶縁膜17をなす半絶縁膜の抵抗率ρが、電流密度が6.25×10−4(A/cm)であるとき、3.9×10Ωcmであった。抵抗率ρ=3.9×10Ωcmの半絶縁膜によるゲート絶縁膜15を備えたことで、1000Vの耐圧が得られた。ゲート絶縁膜の抵抗率が、1×1011Ωcmを超えると耐圧が急減し、ゲート絶縁膜の抵抗率が、1×10Ωcmを下回るとゲートリーク電流が増大する。 (もっと読む)


【課題】電界効果トランジスタを有する半導体装置のトランジスタ性能を向上させることのできる技術を提供する。
【解決手段】ゲート絶縁膜5およびゲート電極6n,6pの側面にサイドウォール9を形成した後、サイドウォール9の両側の半導体基板1に不純物をイオン注入して不純物領域を形成する。続いて、半導体基板1の主面上に第1絶縁膜14、第2絶縁膜15、および第3絶縁膜16を順次形成した後、イオン注入された上記不純物を活性化する熱処理を行う。ここで、第1絶縁膜14は、第2絶縁膜15よりも被覆性のよい膜であり、かつ、第2絶縁膜15とエッチング選択比が異なる膜である。第2絶縁膜15は、第1絶縁膜14よりも水素の拡散を阻止する機能が高い膜である。第3絶縁膜16は、第1絶縁膜14および第2絶縁膜15よりも内部応力の変化が大きい膜である。 (もっと読む)


【課題】ゲート電極の断線による縦型トランジスタの故障を改善すること。
【解決手段】半導体装置は、第1の方向(Y)に互いに隙間を空けて形成された複数の半導体ピラー(5A〜5A)から成る半導体ピラー群(5)を含む。半導体ピラー群(5)の内、両端部を除く中間部に位置する半導体ピラー(5A〜5A)のいずれか1つである特定の半導体ピラー(5A)と隣接して、ダミーピラー(6)が第1の方向(Y)と直交する第2の方向(X)に設けられている。ゲート絶縁膜(10)が、複数の半導体ピラー(5A〜5A)の各々の外周面とダミーピラー(6)の外周面の一部とに形成されている。ゲート絶縁膜(10)を介して、複数の半導体ピラー(5A〜5A)の間の隙間と特定の半導体ピラー(5A)とダミーピラー(6)との間の隙間とを埋めるように、ゲート電極(11)が、複数の半導体ピラーの側面とダミーピラーの側面とに形成されている。 (もっと読む)


【課題】電界が局所的に集中することを抑制して、高耐圧化した半導体装置を提供する。
【解決手段】ソース領域110は、溝部300側面の第2面32に面し、一部が面31と面32の交線と平行な方向に延在する。ドリフト領域140は、溝部300のうち面32と反対の面33に面し、一部が面31および面33の交線と平行な方向に延在して設けられ、ソース領域110よりも低濃度に形成される。ドレイン領域120は、ドリフト領域140を介し溝部300の反対側に位置し、ドリフト領域140と接するように設けられ、ドリフト領域140よりも高濃度に形成される。第1ゲート絶縁層200は、溝部300の側面のうち面32と面33に交わる方向の面である面34と接するとともに、面31上のうち少なくともチャネル領域130と接する。ゲート電極400は、第1ゲート絶縁層200上に設けられ。溝部300はドリフト領域140よりも深い。 (もっと読む)


【課題】電極構造体、それを備える窒化ガリウム系の半導体素子及びそれらの製造方法を提供する。
【解決手段】GaN系の半導体層GL10と、GaN系の半導体層上に備えられた電極構造体500A,500Bと、を備え、電極構造体500A,500Bは、導電物質を含む電極要素50A、50Bと、電極要素50A,50BとGaN系の半導体層200との間に備えられた拡散層5A、5Bと、を備え、拡散層5A,5Bは、n型ドーパントを含み、n型ドーパントは、4族元素を含み、拡散層と接触したGaN系の半導体層200の領域は、n型ドーパント(例えば、4族元素)でドーピングされる窒化ガリウム系の半導体素子である。 (もっと読む)


【課題】第1の領域において、第2の絶縁膜からゲート絶縁膜への酸化剤の侵入を防止する。第2の領域において、複数の第1の配線間に設けられた第2の絶縁膜を第1の絶縁膜に対して選択的に除去する。
【解決手段】半導体装置の製造方法では、基板の第1の領域には第1の積層体を形成し第2の領域には複数の第1の配線を形成する。第1の絶縁膜をマスクとして、第1の領域の主面に第1の不純物のイオン注入を施す。第1の積層体の側壁を覆いかつ複数の第1の配線間を埋設するように第2の絶縁膜を形成する。第2の絶縁膜をマスクとして、第1の領域の主面に第2の不純物のイオン注入を施す。第1のエッチングにより、第2の絶縁膜を第1の絶縁膜に対して選択的に除去した後、基板に熱処理を行う。 (もっと読む)


【課題】電界が局所的に集中することを抑制して、高耐圧化した半導体装置を提供する。
【解決手段】第1導電型の第1ドリフト領域140は、平面視でソース領域110から離間して設けられている。第1導電型の第2ドリフト領域150は、平面視で第1ドリフト領域140のうちソース領域110と反対側の領域に接している。第1導電型のドレイン領域120は、平面視で第1ドリフト領域140から離間しているとともに、平面視で第2ドリフト領域150のうち第1ドリフト領域140と反対側の領域に接している。チャネル領域130上には、ゲート絶縁層200およびゲート電極400が設けられている。第1フィールドプレート絶縁層300は、半導体基板100上に設けられ、少なくとも平面視で第1ドリフト領域140と第2ドリフト領域150の一部と重なるように設けられている。第1フィールドプレート電極420は、第1フィールドプレート絶縁層300上に接している。 (もっと読む)


【課題】半導体装置の信頼性を向上させることができる技術を提供する。特に、ゲート電極をメタル材料で構成する電界効果トランジスタを有する半導体装置において、安定した動作特性を得ることのできる技術を提供する。
【解決手段】レジストパターン12をマスクとしたドライエッチングにより、ゲート電極13nまたはゲート電極13pを形成した後、酸素および水素を含むプラズマ雰囲気中においてアッシング処理を施すことにより、レジストパターン12を除去し、ゲート電極13nまたはゲート電極13pの側面に付着した反応生成物14を酸化する。その後、洗浄処理を施して、反応生成物14を除去する。 (もっと読む)


【課題】ヘテロ構造電界効果トランジスタに関して、電流崩壊、ゲートリークおよび高温信頼性などの課題を解消する。
【解決手段】高電子移動度トランジスタ(HEMT)、金属−絶縁半導体電界効果トランジスタ(MISFET)あるいはこれらの組み合わせなどの集積回路(IC)デバイスの装置、方法およびシステムであって、該ICデバイスは、基板102上で形成されたバッファ層104と、アルミニウム(Al)と窒素(N)とインジウム(In)またはガリウム(Ga)の少なくとも1つを含み、バッファ層104上に形成されたバリア層106と、窒素(N)とインジウム(In)またはガリウム(Ga)の少なくとも1つとを含み、バリア層106上に形成されたキャップ108層と、キャップ層108に直接連結され、その層上に形成されたゲート118と、を含む。 (もっと読む)


【課題】MOSトランジスタの特性のばらつきを低減するために有利な技術を提供する。
【解決手段】MOSトランジスタを含む半導体装置の製造方法は、半導体基板の上に形成された第1絶縁膜の上にゲート電極材料層を形成する工程と、前記ゲート電極材料層の上にエッチングマスクを形成する工程と、前記ゲート電極材料層をパターニングすることによりゲート電極を形成する工程と、前記ゲート電極が形成された前記半導体基板の上に第2絶縁膜を形成する工程とを含み、前記ゲート電極を形成する工程では、前記ゲート電極材料層がパターニングされるとともに、少なくとも、前記ゲート電極の側面の下部と、前記第1絶縁膜のうち前記側面に隣接する部分とを保護する保護膜が形成され、前記第2絶縁膜を形成する工程では、前記保護膜を覆うように前記第2絶縁膜が形成される。 (もっと読む)


【課題】新規な構造のコンタクトプラグを有する半導体装置を提供する。
【解決手段】
半導体装置は、半導体基板と、半導体基板に形成され、ソース/ドレイン領域及びゲート電極を有するトランジスタと、トランジスタのソース/ドレイン領域及びゲート電極を覆う絶縁膜と、絶縁膜中に形成され、トランジスタのソース/ドレイン領域またはゲート電極に接されるコンタクトプラグとを有し、コンタクトプラグは、絶縁膜の厚さ方向に延在しトランジスタのソース/ドレイン領域またはゲート電極に接触する柱部と、柱部の上部から絶縁膜の表面と平行な方向に張り出し上面が平坦化された鍔部とを有する。 (もっと読む)


【課題】金属シリサイド層の異常成長を防止する。
【解決手段】半導体基板1にゲート絶縁膜5、ゲート電極6a,6b、ソース・ドレイン用のn型半導体領域7bおよびp型半導体領域8bを形成する。それから、サリサイド技術によりゲート電極6a,6bおよびソース・ドレイン領域上に金属シリサイド層13を形成する。そして、金属シリサイド層13の表面を還元性ガスのプラズマで処理してから、半導体基板1を大気中にさらすことなく、金属シリサイド層13上を含む半導体基板1上に窒化シリコンからなる絶縁膜21をプラズマCVD法で堆積させる。 (もっと読む)


【課題】高電圧動作時においても電流コラプス現象を十分に抑制し、高耐圧及び高出力を実現する信頼性の高い化合物半導体装置を得る。
【解決手段】HEMTは、化合物半導体層2と、開口を有し、化合物半導体層2上を覆う保護膜と、開口を埋め込み、化合物半導体層2上に乗り上げる形状のゲート電極7とを有しており、保護膜は、酸素非含有の下層絶縁膜5と、酸素含有の上層絶縁膜6との積層構造を有しており、開口は、下層絶縁膜5に形成された第1の開口5aと、上層絶縁膜6に形成された第1の開口5aよりも幅広の第2の開口6aとが連通してなる。 (もっと読む)


【課題】電流コラプスを抑制しながらノーマリオフ動作を実現することができる化合物半導体装置及びその製造方法を提供する。
【解決手段】化合物半導体装置の一態様には、基板1と、基板1上方に形成された化合物半導体積層構造7と、化合物半導体積層構造上方に形成されたゲート電極11g、ソース電極11s及びドレイン電極11dと、が設けられている。化合物半導体積層構造7には、電子走行層3と、電子走行層3上方に形成された電子供給層5を含む窒化物半導体層と、が設けられている。窒化物半導体層の表面のIn組成は、平面視でゲート電極11gとソース電極11sとの間に位置する領域及びゲート電極11gとドレイン電極11dとの間に位置する領域において、ゲート電極11gの下方よりも低くなっている。 (もっと読む)


1 - 20 / 860