説明

Fターム[5F140CE05]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | 製造工程一般 (2,583) | 平坦化 (1,497)

Fターム[5F140CE05]の下位に属するFターム

Fターム[5F140CE05]に分類される特許

1 - 20 / 84


【課題】一定のドレイン電圧及びゲート電圧に対して得られるドレイン電流を増大することの出来る半導体装置の製造方法を提供する。
【解決手段】チャンネル領域と、ソース領域及びドレイン領域と、前記ソース領域及びドレイン領域にそれぞれ電気的に接続する合計二つの第1の電極と、前記チャンネル領域上にゲート絶縁膜を介して設けられた第2の電極とを備えた半導体装置の製造に際し、前記ゲート絶縁膜を、酸素の含有量を1ppb以下にした水素添加超純水にIPAを添加した洗浄液を用いて、酸素含有量1ppb以下の窒素雰囲気でしかも遮光した状態で表面の洗浄を行ない、かつ等方性酸化または窒化で形成することにより、前記チャンネル領域と前記ゲート絶縁膜との界面の平坦度を、前記ソース領域から前記ドレイン領域に向かう方向での長さ2nmにおけるピーク・トゥ・バレイ値が0.3nm以下となるようにするとともに、前記第1の電極から前記チャンネル領域までの抵抗率を4Ω・μm以下とした。 (もっと読む)


【課題】下地絶縁膜の膜厚精度の向上とトランジスタ特性の変動抑制との両立が図られたMISトランジスタを備えた半導体装置、及びその製造方法を提供する。
【解決手段】半導体装置は、半導体基板100における活性領域103a上に形成されたゲート絶縁膜108aと、ゲート絶縁膜108a上に形成されたゲート電極111aとを有するMISトランジスタ170を備えている。ゲート絶縁膜108aは、活性領域103a上に形成された板状の下層ゲート絶縁膜210aと、下層ゲート絶縁膜210a上に形成された断面形状が凹状の上層ゲート絶縁膜211aとを有する。下層ゲート絶縁膜210aは、活性領域103a上に形成された下地絶縁膜104aと、第1の高誘電率絶縁膜106aとで構成され、上層ゲート絶縁膜211aは、第1の高誘電率絶縁膜106a上に形成された第2の高誘電率絶縁膜107aで構成される。 (もっと読む)


【課題】製造効率の向上、コストダウン、信頼性の向上を実現する。
【解決手段】第1導電型の第1電界効果トランジスタを第1基板に設ける。そして、第1導電型と異なる第2導電型の第2電界効果トランジスタを第2基板に設ける。そして、第1基板と第2基板とのそれぞれを対面させて貼り合わせる。そして、第1電界効果トランジスタと第2電界効果トランジスタとの間を電気的に接続させる。 (もっと読む)


【課題】パターンの微細化、特に、SRAMのセル面積を縮小するためには、隣接ゲートの端部間距離を縮小することが重要となる。しかし、28nmテクノロジノードにおいては、ArFによる単一回露光でパターンを転写することは、一般に困難である。従って、通常、複数回の露光、エッチング等を繰り返すことによって、微細パターンを形成しているが、ゲートスタック材にHigh−k絶縁膜やメタル電極部材が使用されているため、酸化耐性やウエットエッチ耐性が低い等の問題がある。
【解決手段】本願発明は、メモリ領域におけるhigh−kゲート絶縁膜およびメタル電極膜を有するゲート積層膜のパターニングにおいて、最初に、第1のレジスト膜を用いて、隣接ゲート電極間切断領域のエッチングを実行し不要になった第1のレジスト膜を除去した後、第2のレジスト膜を用いて、ライン&スペースパターンのエッチングを実行するものである。 (もっと読む)


【課題】 TiC膜を含む半導体構造を形成する方法を提供する。
【解決手段】 高誘電率(k)の誘電体14および界面層12を含む積層体を基板10の表面上に設けるステップと、Heによって希釈された炭素(C)源およびArを含む雰囲気において、Tiターゲットをスパッタすることにより、前記積層体上にTiC膜16を形成するステップとを含む、半導体構造を形成する方法である。 (もっと読む)


【課題】信頼性が高い半導体装置及びその製造方法を提供する。
【解決手段】実施形態に係る半導体装置は、上面にトレンチが形成された半導体基板と、前記トレンチ内に設けられた絶縁部材と、を備える。そして、前記半導体基板と前記絶縁部材との間には、空隙が形成されている。 (もっと読む)


【課題】窒化ガリウム系半導体のドライエッチングに、塩素系ガスを用いたICP−RIEを用いると、誘電結合型プラズマは、温度が高いので、エッチングされた面に凹凸ができ、半導体にダメージを与え、塩素が残留する。
【解決手段】窒化ガリウム系半導体からなる第1の半導体層を形成する第1半導体層形成工程と、第1の半導体層の一部を、臭素系ガスを用いて、マイクロ波プラズマプロセスでドライエッチングして、リセス部を形成するリセス部形成工程と、を備え、窒化ガリウム系半導体装置を製造する半導体装置の製造方法を提供する。 (もっと読む)


【課題】安定した静電気保護機能を有する半導体装置を提供すること。
【解決手段】半導体装置は、シリコン柱を有するシリコン基板、シリコン柱の側壁に沿って形成されたゲート電極、ゲート電極とシリコン柱との間に形成されたゲート絶縁膜シリコン柱の上部に形成された上部拡散層、及びシリコン基板において上部拡散層より下方に形成された下部拡散層、を有する縦型MOSトランジスタと、下部拡散層と電気的に接続されたパッドと、を備える。サージ電圧が印加された際に下部拡散層と基板との間においてブレイクダウンが発生する。 (もっと読む)


【課題】LDMOSトランジスタに係る半導体装置の高速動作を可能とする。
【解決手段】P型ウエル層3の表面に形成された複数の素子分離膜4の中央部に開口溝5を形成する。開口溝5の側壁から開口溝5の内側に向かってゲート絶縁膜6を介して延在するゲート電極7を形成する。ゲート電極7をマスクにしてセルフアラインでボロンの斜めイオン注入により開口溝5内のP型ウエル層3にP型ボディ層8を形成する。
ゲート電極7をマスクに砒素のイオン注入によりP型ボディ層8にN+型ソース層9を、同時に2つの素子分離膜4間のP型ウエル層3にN+型ドレイン層10を形成する。素子分離膜4の下方のP型ウエル層3にP型ボディ層8の端部からN+型ドレイン層10に延在するN−型ドリフト層を形成する。この際、P型ボディ層8の端部から開口溝5の側壁下部までの領域AのN−型ドレイン層11の幅をできるだけ小さくなるよう制御する。 (もっと読む)


【課題】サリサイド構造を有するMIS型電界効果トランジスタにおいて、ゲート電極とソース・ドレインコンタクトとの間の短絡を防止する。
【解決手段】ゲート電極175上にはシリサイド層230が形成されている。シリサイド層230の上面は、シリサイド層230の中央から両端に向けて低くなっており、当該両端におけるシリサイド層230の上面の高さは、オフセットスペーサ180の高さ以下である。 (もっと読む)


【課題】工程数が多く、煩雑になる問題を解決する半導体装置の製造方法を提供する。
【解決手段】半導体基板1に第1絶縁膜2を形成し、第1領域Aに第1導電型の第1ウエル層31を形成し、第1領域A以外の第1絶縁膜2上に第1半導体膜3を形成し、第1ウエル層31にトランジスタを形成し、第1半導体膜3及び第1領域Aの第1絶縁膜2の上に、トランジスタのビットコンタクトを兼ねる第2半導体膜7を形成する工程、第2半導体膜7上に、第2領域用B1のマスク8を積層してから、第1または第2導電型ドーパントを注入して第2ウエル層32を形成し、次いで、第2領域B1の少なくとも第2半導体膜7に、ドーパントを注入する工程、第2半導体膜7上に導電膜を積層してから、第1、第2半導体膜3,7及び導電膜を部分的にエッチングして、第1領域Aにトランジスタのビット配線層を、第2領域B1,B2に別の配線層を形成する工程、を具備する。 (もっと読む)


【課題】配線の信頼性の高い半導体装置を提供する。
【解決手段】半導体基板42上に台形状の凸部領域と台形状の凹部領域を設け、凹部領域のシリコン表面にはゲート酸化膜45が設けられ、ゲート酸化膜上にはゲート電極46が形成されている。凹部領域に設けられたゲート電極46の両側の凸部領域にはソース・ドレイン高濃度領域48が位置し、ソース・ドレイン高濃度領域48とゲート電極46の間にはソース・ドレイン低濃度領域47が形成されている。ソース・ドレイン高濃度領域48の上表面には第1層目の金属配線49と第2層目の金属配線50と第3層目の金属配線52が積層され、ソース・ドレイン高濃度領域48から第3金属配線までの接続にコンタクトホールやビアホールなどを利用していない。このように本発明の半導体装置は、コンタクトホールやビアホールなどの接続孔を形成しないで素子と配線との接続や配線間接続を行なうことができる。 (もっと読む)


【課題】チャネル移動度のような電気的特性の優れた半導体装置およびその製造方法を提供する。
【解決手段】半導体装置1は、<01−10>方向における(0−33−8)面に対するオフ角が−3°以上+5°以下である主表面2Aを有し、炭化珪素からなる基板2と、基板2の主表面2A上にエピタキシャル成長により形成され、炭化珪素からなるp型層4と、p型層4の表面に接触するように形成された酸化膜8とを備えている。そして、p型層4と酸化膜8との界面から10nm以内の領域における窒素原子濃度の最大値は1×1021cm−3以上となっている。 (もっと読む)


【課題】ゲート絶縁膜の端部にトラップされるホットキャリアの数を抑制し、且つ、面積拡大を抑制しつつ高耐圧のMOSトランジスタを作製する。
【解決手段】第1導電型の半導体基板1上に形成したマスクパターン9をマスクとして、第2導電型の一対の第1低濃度拡散領域4と、第1低濃度拡散領域4よりも深くかつ高濃度の第2導電型の一対の第2低濃度拡散領域3と、を形成する。そして、一対の第1低濃度拡散領域4のうちの一方の第1低濃度拡散領域4上から他方の第1低濃度拡散領域4上に亘ってゲート絶縁膜5を形成し、このゲート絶縁膜5上にゲート電極6を形成する。そして、ゲート電極6をマスクとして、第2低濃度拡散領域3よりも高濃度の第2導電型の一対の高濃度拡散領域8を形成する。 (もっと読む)


【課題】素子面積の増大を抑制しつつ、ハンプ特性を改善できる半導体装置およびその製造方法を提供する。
【解決手段】一導電型半導体基板100の一主面101にSTI構造の素子分離領域30を形成し、素子分離領域30上の端部に凹部13、14を有するゲート電極10を形成し、ゲート電極10をマスクにして一導電型不純物を斜めにイオン注入して、凹部13、14を介して素子領域50の端部領域53、54に不純物注入領域71、72を形成し、ゲート電極10をマスクにしてソース、ドレイン領域81、82を形成する。 (もっと読む)


【課題】素子面積が小さくしかも素子の耐圧の高い半導体装置およびその製造方法を提供する。
【解決手段】基板11と、基板上に設けられた一導電型の第1の半導体層13と、第1の半導体層上に設けられた一導電型で低不純物濃度の第2の半導体層15と、アイソレーション領域50によって分離された素子領域71内に形成されたMOSトランジスタ75と、素子領域内に一主面から第1の半導体層に達して設けられた一導電型で高不純物濃度の領域17と、領域17とMOSトランジスタのドレイン領域35との間に設けられた絶縁領域60であって、一主面10から第1の半導体層13に達し、基板11に達していない絶縁領域60とを備える。 (もっと読む)


低寄生抵抗であるチャネル歪みされたマルチゲートトランジスタとその製造方法に係る。ゲートを連結したチャネル側壁の高さがHsiである半導体フィンのチャネル領域の上にゲートスタックを形成されてよく、ゲートスタックに隣接する半導体フィンのソース/ドレイン領域内に、エッチングレートを制御するドーパントを注入してよい。ドーピングされたフィン領域をエッチングして、半導体フィンの、略Hsiに等しい厚みを除去して、ゲートスタックの一部の下にある半導体基板の部分を露呈させるソース/ドレイン延長キャビティを形成してよい。露呈した半導体基板の上に材料を成長させて、再成長したソース/ドレイン・フィン領域を形成して、ソース/ドレイン延長キャビティを充填して、ゲートスタックからの長さを、チャネルの長さに実質的に平行な方向に離れる方向に延ばしてよい。 (もっと読む)


【課題】例えば大きな電荷キャリア移動度を有する半導体装置を提供する。
【解決手段】半導体装置は、複数の積層された層群を有する超格子を有する。また装置は、電荷キャリアが積層された層群と平行な方向に超格子を通って輸送される領域を有する。超格子の各層群は、基本半導体部分を定形する複数の積層された基本半導体分子層と、該基本半導体部分上のエネルギーバンド調整層と、を有する。さらにエネルギーバンド調整層は、少なくとも一つの非半導体分子層を有し、この層は、連接する基本半導体部分の結晶格子内に閉じ込められる。従って超格子は、平行な方向において、エネルギーバンド調整層がない場合に比べて大きな電荷キャリア移動度を有する。 (もっと読む)


【課題】例えば大きな電荷キャリア移動度を有する半導体装置を製作する方法を提供する。
【解決手段】複数の積層された層群を有する超格子を形成するステップによって、半導体装置を製作する方法である。また当該方法は、前記超格子を通って、前記積層された層群と平行な方向に、電荷キャリアの輸送が生じる領域を形成するステップを有する。超格子の各層群は、基本半導体部分を定形する複数の積層された基本半導体分子層と、該基本半導体部分上のエネルギーバンド調整層と、を有する。前記エネルギーバンド調整層は、基本半導体部分に隣接する結晶格子内に取りこまれた、少なくとも一つの非半導体分子層を有し、前記超格子は、超格子が存在しない場合に比べて、前記平行な方向において大きな電荷キャリア移動度を有する。また前記超格子は、共通のエネルギーバンド構造を有しても良い。 (もっと読む)


【解決手段】
洗練された半導体デバイスにおいて、非対称ウエル注入に基いて非対称トランジスタ構造が得られる一方で傾斜注入プロセスは回避し得る。この目的のために、段階的なレジストマスクのような段階的な注入マスクが形成されてよく、段階的な注入マスクは、非対称トランジスタのソース側と比較してドレイン側で高いイオン遮断能力を有していてよい。例えば、非対称構造は、高度な性能向上を伴う非傾斜注入プロセスに基いて得ことができ、また考慮されている技術標準にかかわりなく完成され得る。 (もっと読む)


1 - 20 / 84