説明

Fターム[5F152AA03]の内容

再結晶化技術 (53,633) | 目的、効果 (2,853) | 成長方向の制御 (553) | 横方向に成長(ラテラル) (489) | 一方向に成長 (282)

Fターム[5F152AA03]に分類される特許

1 - 20 / 282


【課題】剥離前の形状及び特性を保った良好な状態で転置工程を行えるような、剥離工程
を用いて半導体装置及び表示装置を作製できる技術を提供する。よって、より高信頼性の
半導体装置及び表示装置を装置や工程を複雑化することなく、歩留まりよく作製できる技
術を提供することも目的とする。
【解決手段】透光性を有する第1の基板上に光触媒物質を有する有機化合物層を形成し、
光触媒物質を有する有機化合物層上に素子層を形成し、光を第1の基板を通過させて、光
触媒物質を有する有機化合物層に照射し、素子層を前記第1の基板より剥離する。 (もっと読む)


【課題】TFTの特性ばらつきに起因する、画素間における発光素子の輝度のばらつきを低減し、信頼性が高く、画質の優れた表示装置を提供することを目的とする。
【解決手段】発光素子に接続するTFTを複数個、少なくとも2つ設け、それぞれのTFTの活性層を形成する半導体領域の結晶性を異ならせるものである。
当該半導体領域は、非晶質半導体膜をレーザーアニールにより結晶化させたものが適用されるが、結晶性を異ならせるために、連続発振レーザービームの走査方向を変えて、結晶成長の方向を互いに異ならせる方法を適用する。或いは、連続発振レーザービームの走査方向は同じとしても、個々の半導体領域間でTFTのチャネル長方向を変えて、結晶の成長方向と電流の流れる方向を異ならせる方法を適用する。 (もっと読む)


【課題】基板上の任意の位置に任意の向きの有機半導体単結晶を形成する。
【解決手段】親液性であって、結晶成長の方向を規制する形状(長方形など)を有する領域内に置かれた有機半導体に対して溶媒蒸気アニールを行うことにより、当該領域内に所定の方向に整列した有機半導体単結晶を成長させる。 (もっと読む)


【課題】結晶シリコンの位置を制御可能な結晶シリコンの製造方法を提供する。
【解決手段】結晶シリコンの製造方法は、基板上にa−Si膜を形成する工程S1と、単結晶シリコンの熱伝導率以上の熱伝導率を有し、かつ、所望のパターンに配置された貫通孔を有するマスクをa−Si膜上に配置する工程S2と、a−Si膜およびマスクに熱プラズマジェットを照射しながら熱プラズマジェットを所望の方向に走査する工程S3とを備える。 (もっと読む)


【課題】ラインビームとして成形されたレーザとの相互作用に対して膜を位置決めし、かつ例えばアモルファスシリコン膜を溶融させて例えば薄膜トランジスタ(TFT)を製造するために膜を結晶化するように成形ラインビームのパラメータを制御するためのシステム及び方法を提供する。
【解決手段】基板上に堆積されたアモルファスシリコンのような膜を選択的に溶融させるためのレーザ結晶化装置及び方法。装置は、膜を溶融させる際に使用される伸張レーザパルスを生成するための光学システムを含むことができる。本発明の実施形態の更に別の態様では、レーザパルスを伸張するためのシステム及び方法を提供する。別の態様では、ビーム経路に沿ったある位置でパルスレーザビーム(伸張又は非伸張)の発散を予め決められた範囲に維持するためのシステムを提供する。 (もっと読む)


【課題】酸化物半導体を用いた半導体装置に安定した電気的特性を付与し、高信頼性化する。
【解決手段】酸化物半導体膜を含むトランジスタの作製工程において、非晶質酸化物半導体膜を形成し、該非晶質酸化物半導体膜に酸素を導入して酸素を過剰に含む非晶質酸化物半導体膜を形成する。該非晶質酸化物半導体膜上に酸化アルミニウム膜を形成した後、加熱処理を行い該非晶質酸化物半導体膜の少なくとも一部を結晶化させて、結晶性酸化物半導体膜を形成する。 (もっと読む)


【課題】電力が供給されない状況でも記憶内容の保持が可能で、かつ、書き込み回数にも制限が無い、新たな構造の半導体装置を提供する。
【解決手段】ワイドギャップ半導体、例えば酸化物半導体を含むメモリセルを用いて構成された半導体装置であって、メモリセルからの読み出しのために基準電位より低い電位を出力する機能を有する電位切り替え回路を備えた半導体装置とする。ワイドギャップ半導体を用いることで、メモリセルを構成するトランジスタのオフ電流を十分に小さくすることができ、長期間にわたって情報を保持することが可能な半導体装置を提供することができる。 (もっと読む)


【課題】本発明の目的は、新規な半導体シリコン膜及びそのような半導体シリコン膜を有する半導体デバイス、並びにそれらの製造方法を提供することである。
【解決手段】本発明の半導体シリコン膜(160)は、複数の細長シリコン粒子(22)が短軸方向に隣接してなる半導体シリコン膜である。ここでは、細長シリコン粒子(22)は、複数のシリコン粒子の焼結体である。また、このような半導体シリコン膜(160)を製造する本発明の方法は、第1のシリコン粒子分散体を、基材(100)上に塗布し、乾燥し、光(200)を照射して、第1の半導体シリコン膜(130)を形成する工程、第2のシリコン粒子分散体を、第1の半導体シリコン膜(130)に塗布し、乾燥し、光(200)を照射する工程を含む。ここで、この方法では、第1のシリコン粒子分散体の第1のシリコン粒子の分散が5nm以上である。 (もっと読む)


【課題】順次側面結晶化を行う際に、レーザ光にパターンイメージを与える光学部材の加熱昇温を抑える。
【解決手段】 アモルファス膜に照射するレーザ光10aを出力するレーザ光源10と、レーザ光をアモルファス膜に誘導する光学系15と、光学系15の一部を構成し、アモルファス膜に照射するレーザ光を集光する対物レンズ14と、光学系15のレーザ光光路上で対物レンズ14よりも前段側に配置され、レーザ光透過領域およびレーザ光遮蔽領域を有する光学部材20を備え、光学部材20は、レーザ光遮蔽領域に、対物レンズ14の解像度と倍率の逆数との積の値よりも小さく、かつレーザ光10aの波長よりも大きい規制寸法を有してレーザ光10の透過を可能にする昇温抑制用レーザ光透過部が設けられている。 (もっと読む)


【課題】 光学系を複雑化させることなく、均一なエネルギー密度のレーザ光を被照射体
に照射することができる、レーザ照射装置の提案を課題とする。
【解決手段】本発明のレーザ照射装置は、レーザ発振器と、被照射体の表面における一軸方向に、前記レーザ発振器から発振されたレーザ光によって形成されるビームスポットを繰り返し走査するための光学系と、前記表面において前記一軸方向と交差する方向に向かって、前記レーザ光に対する前記被照射体の相対的な位置を移動させるための位置制御手段とを有することを特徴とする。 (もっと読む)


【課題】本発明は、曲面を有する基材に被剥離層を貼りつけた半導体装置およびその作製方法を提供することを課題とする。特に、曲面を有するディスプレイ、具体的には曲面を有する基材に貼りつけられたOLEDを有する発光装置、曲面を有する基材に貼りつけられた液晶表示装置の提供を課題とする。
【解決手段】本発明は、基板上に素子を含む被剥離層を形成する際、素子のチャネルとして機能する領域のチャネル長方向を全て同一方向に配置し、該チャネル長方向と同一方向に走査するレーザー光の照射を行い、素子を完成させた後、さらに、前記チャネル長方向と異なっている方向、即ちチャネル幅方向に湾曲した曲面を有する基材に貼り付けて曲面を有するディスプレイを実現するものである。 (もっと読む)


【課題】本願発明で開示する発明は、従来と比較して、さらに結晶成長に要する熱処理時間を短縮してプロセス簡略化を図る。
【解決手段】
一つの活性層204を挟んで二つの触媒元素導入領域201、202を配置して結晶化を行い、触媒元素導入領域201からの結晶成長と、触媒元素導入領域202からの結晶成長とがぶつかる境界部205をソース領域またはドレイン領域となる領域204bに形成する。 (もっと読む)


【課題】光学調整に困難を伴うことなく、3以上のレーザビームを照射面にて合成し、高出力で生産性を向上させることができるレーザを照射する技術の提供。
【解決手段】その技術は、波長の互いに異なるレーザ発振器とダイクロイックミラー、又はそれに加えて偏光子を用いてレーザビームを合成し、高出力で生産性を向上させレーザを照射するものであり、例えばレーザ発振器から射出されたレーザ光1をダイクロイックミラー1を通過させ、レーザ光1とは波長の異なるレーザ発振器から射出されたレーザ光2をダイクロイックミラー1で反射させてレーザ光を合成し、合成されたレーザ光を照射レーザ光とし、照射レーザ光を照射面上に投影するものである。 (もっと読む)


【課題】レーザ光のエネルギー強度の弱い部分を遮断し、かつ光の回折による縞を発生させることなく、線状レーザ光を照射面に照射することができる、照射面上に均一強度の線状ビームを照射するレーザアニール方法及びレーザアニール装置の提供。
【解決手段】レーザ発振器101から射出されたレーザ光をスリット102を通過させて強度の弱い部分を遮断し、ミラー103で偏向させ、スリットにできた像を凸型シリンドリカルレンズ104によって照射面106に投影して照射面上に均一強度の線状ビームを照射することでレーザアニールを行う。 (もっと読む)


【課題】半導体性酸化物を用いた半導体装置は、可視光や紫外光を照射することで電気的特性が変化する。このような問題に鑑み、半導体性酸化物膜を用いた半導体装置に安定した電気的特性を付与し、信頼性の高い半導体装置を作製する。
【解決手段】亜鉛のように400〜700℃で加熱した際にガリウムよりも揮発しやすい材料を酸化ガリウムに添加したターゲットを用いて、スパッタリング方法で成膜したものを400〜700℃で加熱することにより、添加された材料を膜の表面近傍に偏析させ、かつ、その酸化物を結晶化させる。さらに、その上に半導体性酸化物膜を堆積し、熱処理することにより結晶化した酸化物の結晶構造を引き継いだ結晶を有する半導体性酸化物を形成する。 (もっと読む)


【課題】非晶質上に低コストで高性能な半導体装置を形成する技術を提供する。
【解決手段】GeがSi濃度よりも高濃度に含まれた疑似Ge領域(2)を含有し、該領域のGe濃度は初期SiGe薄膜中のGe濃度よりも高濃度であり、リボン形状をした結晶粒(1)は、互いに平行で且つ直線状に配置している疑似Ge領域(2)に挟まれる構造を有し、結晶粒(1)内においてGe濃度はSi濃度よりも低濃度であり、且つ結晶粒(1)内のGe濃度は初期SiGe薄膜中のGe濃度よりも低濃度であり、さらに各々の結晶粒(1)は相互に同一の方位を有する結晶粒から成っていることを特徴とする非晶質上の半導体薄膜からなる半導体装置。 (もっと読む)


【課題】基板裏面からの二次ビームを原因とする干渉の影響を抑え、被照射物を均一にレーザアニールすることができ、且つスループットが良好である半導体装置の作製方法を提供する。
【解決手段】基板上に形成された半導体膜に、少なくとも1つのガルバノミラーとfθレンズとを用いた光学系を用いてパルス発振のレーザビームを照射する半導体装置の作製方法であって、前記基板の屈折率をn、前記基板の厚さをd(メートル)、真空中の光速をc(メートル/秒)とした場合に、前記レーザビームのパルス幅であるt(秒)を、t<2nd/cという式により算出し、前記レーザビームのパルス幅を前記算出したtの範囲から選択して、前記レーザビームを照射する。 (もっと読む)


【課題】ビームスポットの面積を飛躍的に広げ、結晶性の劣る領域の占める割合を低減することができるレーザ照射装置の提供を課題とする。また連続発振のレーザ光を用いつつ、スループットをも高めることができる、レーザ照射装置の提供を課題とする。さらに本発明は、該レーザ照射装置を用いたレーザ照射方法及び半導体装置の作製方法の提供を課題とする。
【解決手段】高調波のパルス発振の第1のレーザ光により溶融した領域に、連続発振の第2のレーザ光を照射する。具体的に第1のレーザ光は、可視光線と同程度かそれより短い波長(890nm以下程度)を有する。第1のレーザ光によって半導体膜が溶融することで、第2のレーザ光の半導体膜への吸収係数が飛躍的に高まり、第2のレーザ光が半導体膜に吸収されやすくなる。 (もっと読む)


【課題】結晶粒成長の大きさ、方向性を均一化し、特性のばらつきを抑えることが可能な半導体装置の製造方法、及び半導体装置を提供する。
【解決手段】半導体装置の製造方法において、絶縁表面を有する基板上に、非晶質のSi膜を形成し、Si膜の第1の領域及び第2の領域に、第1導電型の第1の不純物を注入し、第1のレーザー光を、第1の方向に走査してSi膜上に照射することにより、Si膜を溶融固化させて結晶化するとともに、第1の不純物を活性化し、第2の領域をマスクし、第1の領域に、第1の不純物より軽元素である第2導電型の第2の不純物を、第1の不純物より高濃度となるように注入し、第2の不純物を活性化する。 (もっと読む)


【課題】結晶粒の成長方向を多結晶化すべき位置に応じて任意に調整することができ、その位置において、結晶粒の成長方向が一定の方向に揃った低温ポリシリコン膜を得る。
【解決手段】マスク3には、一方向に延びるレーザ光の遮光領域31と透過領域32とが、前記一方向に垂直の方向に隣接するように設けられている。このマスク3を介してマイクロレンズ5によりレーザ光をチャネル領域形成予定領域7に照射する。透過領域32を透過したレーザ光が、a−Si:H膜に照射されてこの部分をアニールして多結晶化する。次に、マスク3を取り外して、予定領域7の全体にレーザ光を照射すると、既に多結晶化している領域は融点が上昇していて溶融せず、アモルファスのままの領域が溶融凝固して多結晶化する。 (もっと読む)


1 - 20 / 282