説明

Fターム[5G321CA03]の内容

超電導導体及びその製造方法 (9,304) | 超電導導体の構造 (3,937) | 超電導体の内部構造 (841) | 結晶相制御型(例;アモルファス) (18)

Fターム[5G321CA03]に分類される特許

1 - 18 / 18


【課題】広い温度領域において磁場中で高い超電導特性を有する酸化物超電導線材、および該酸化物超電導線材を少ない工程数で製造可能な酸化物超電導線材の製造方法の提供。
【解決手段】本発明の酸化物超電導線材10は、テープ状の基材11と、基材11の上方に設けられた中間層12と、中間層12の上方に設けられたREBaCu7−δ(式中、REは希土類元素のうちの1種又は2種以上を表す。)の組成式で表される酸化物超電導体からなる酸化物超電導層13と、を備え、酸化物超電導層13を構成する酸化物超電導体のRE元素の種類が、酸化物超電導層13の幅方向で異なることを特徴とする。 (もっと読む)


【課題】臨界温度が高い超伝導材料及びその製造方法を創案する。
【解決手段】本発明の超伝導材料は、組成として、モル%表記で、Bi23 10〜30%、SrO 20〜50%、CaO 10〜30%、CuO 20〜45%、SiO2+TiO2 0.1〜10%を含有することを特徴とする。ここで、「SiO2+TiO2」は、SiO2とTiO2の合量を指す。 (もっと読む)


【課題】
マイクロクラックの発生を抑制して300nm以上の膜厚を持つサファイア基板上に超電導材料の成膜を可能にする及びその製造方法を提供する。
【解決手段】
酸化物が超電導物質を形成する金属の有機化合物溶液を基板上に塗布し乾燥させる工程(1)、紫外光であるエキシマレーザによって金属の有機化合物の有機成分を光分解するレーザ照射工程(2)、金属の有機化合物中の有機成分を熱分解させる仮焼成工程(3)、超電導物質への変換を行う本焼成工程(4)を経て基板上にエピタキシャル成長させた超電導薄膜材料を製造するに際し、本焼成工程を行う前に所定の箇所のみにレーザ照射を行うことにより、超電導物質内にa軸成長する前駆体箇所とc軸成長する前駆体箇所を混在させたのちに本焼成工程を行い、所定の箇所のみc軸成長させることを特徴とする超電導材料の内部応力を緩和することを特徴とする酸化物超電導材料の製造方法。 (もっと読む)


【課題】RE−Ba−Cu−O(REはY又は希土類元素から選ばれる1種又は2種以上の元素)の組成からなる希土類系酸化物超電導バルク材料において、パルス着磁性能に優れた酸化物超電導バルク材料を提供する。
【解決手段】単結晶状のRE1Ba2Cu3y(REはY又は希土類元素から選ばれる1種又は2種以上の元素、6.8≦y≦7.2)中にRE2BaCuO5が微細分散した酸化物超電導バルク材料であって、前記酸化物超電導バルク材料が結晶の(001)方向の±10度以内の方向に開けられた複数の細孔を有すると共に、前記複数の細孔が前記酸化物超電導バルク材料の外周部から中心に向かって動径方向に並んで配置されていることを特徴とする酸化物超電導バルク材料である。 (もっと読む)


【課題】本発明は、酸素富化過程を含む酸化物超電導バルク材料の製造方法において、十分に高い超電導特性を得ることのできる酸化物超電導バルク材料の製造方法を提供する。
【解決手段】単結晶状のRE1+xBa2-xCu3y(REはY又は希土類元素から選ばれる1種又は2種以上の元素、−0.1≦x≦0.1、6.8≦y≦7.2)中にRE2BaCuO5が微細分散した酸化物超電導バルク材料の製造方法であって、溶融状態から徐冷中に結晶成長させた酸化物超電導バルク材料の酸素量を酸素富化過程において富化する前に、1000K以上、1250K以下の温度で前記結晶成長させた酸化物超電導バルク材料を熱処理する酸素富化前熱処理過程を有することを特徴とする酸化物超電導バルク材料の製造方法である。 (もっと読む)


【課題】本発明は、酸化物超電導層の下地となる高配向度のキャップ層において従来必要とされていたLMOの下地層を用いることなく優れた結晶配向性を得ることができる技術の提供を目的とする。
【解決手段】本発明は、金属基板1と、該金属基板1上にイオンビームアシスト法(IBAD法)により形成したMgOの中間層3と、該中間層3上に直接形成されて前記中間層3の結晶配向性よりも優れた結晶配向性を示すキャップ層5とを具備してなる酸化物超電導導体用基材Aであって、前記MgOの中間層3に前記キャップ層5の形成前に加湿処理が施され、該キャップ層5が優れた自己配向性を備えて前記中間層3の結晶配向性よりも優れた結晶配向性を有していることを特徴とする。 (もっと読む)


【課題】接続抵抗を低減できる超電導線材の製造方法を提供する。
【解決手段】基板1の主表面上に中間層を形成する。中間層上に超電導層3を形成する。超電導層の露出表面をドライエッチングする。超電導層の露出表面には、超電導層の成膜時にできた異層や非配向層、成膜後に大気中の水分に曝されることにより形成されたアモルファス層など、超電導線材5cの接続抵抗の原因となる不純物が存在する。超電導層の露出表面をドライエッチングすることで、これらの不純物を除去することができ、超電導線材同士を接続する際に生じる接続抵抗を低減することができる。 (もっと読む)


【課題】真空中での伝熱による冷却が可能であるとともに、巻線作業がし易く、剥離して超電導特性が劣化しない補強高温超電導線、およびそれを巻線した高温超電導コイルを提供することを目的とする。
【解決手段】金属基板4上に中間層5および酸化物超電導層6を形成してなるテープ形状の高温超電導線2と補強テープ線3から構成される補強高温超電導線1において、補強テープ線3は、高温超電導線2を覆うように幅方向の両端が折り曲げられかつこの両端部が接触せずに配置されていることを特徴とする。 (もっと読む)


各層が酸素アニオンによって取り囲まれたカチオンのネットワークを含む積層された第1の層および第2の層を含む材料を含む超伝導体。本発明によれば、この材料は、イルメナイト結晶構造およびABX型の基本組成を有し、式中、AおよびBは、この第1の層および第2の層のカチオン部位を主に占める元素であり、これに対応して、元素AおよびBのうちの少なくとも1つは遷移金属であり、Xは、アニオン部位を主に占めるアニオン元素である。 (もっと読む)


【課題】 本発明は高い臨界温度を持つ(Bi,Pb)2223系酸化物超電導材料の製造方法を提供する。
【解決手段】 (Bi,Pb)SrCaCu系酸化物超電導材料の製造方法であって、原料を混合する工程と、前記混合された原料を熱処理する少なくとも2回以上の熱処理工程を含み、前記熱処理工程は、(Bi,Pb)2223結晶を形成する第1の熱処理工程と、(Bi,Pb)2223結晶が形成された後に、(Bi,Pb)2223結晶中のSr含有量を増加させる第2の熱処理工程を含み、前記第2の熱処理工程は前記第1の熱処理工程より低い温度で行うことで臨界温度が向上する。 (もっと読む)


【課題】高臨界電流密度であり、かつ、クラックの生じない高温超電導酸化物(RE)Ba2Cu3O7 (RE = Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Yb)(以下 (RE)BCO 薄膜と略称)の薄膜及びその作製方法を提供する。
【解決手段】
バッファ層を有するサファイア単結晶基板のバッファ層上に、1%以上の空孔を導入した高温超電導酸化物 (RE)BCO 薄膜を、間に (RE)BCO 薄膜とは異なるRE’を選んだ (RE’)Ba2Cu3O7の中間層薄膜を介して設けた多層構造の(RE)BCO 薄膜及びその製造方法。 (もっと読む)


【課題】臨界電流密度Jcが高く、かつ磁場角度依存性が小さい超電導体膜を提供する。
【解決手段】
一般式REBaCu(式中、REはPr及びCeを除く希土類元素のうち、少なくとも1種の元素であり、6.5<X<7.1である)で表される超電導物質からなる超電導体層中に、Baを含む常電導物質からなり、膜厚方向に間欠的に並んだ柱状結晶が形成されている。 (もっと読む)


【課題】超電導転移が急峻で臨界温度が110Kよりも高いBi系超電導体、このBi系超電導体を含む超電導線材および超電導機器を提供する。
【解決手段】本Bi系超電導体は、超電導相として(Bi,Pb)2223を含むBi系超電導体であって、(Bi,Pb)2223のc軸に平行な方向に磁場が印加されている状態で測定され50Kで規格化された磁化率が−0.5となる第1の臨界温度T1Cが110.0Kより高く、磁化率が−0.1となる第2の臨界温度T2Cと前記第1の臨界温度T1Cとの差|T2C−T1C|が1.0K以下である。さらに好ましくは、磁化率が−0.001となる第3の臨界温度T3Cと前記第1の臨界温度T1Cとの差|T3C−T1C|が3.0K以下である。 (もっと読む)


【課題】本発明は、短い時間で結晶成長可能とし、捕捉磁場特性の優れた酸化物超電導バルク体を製造する技術の提供を目的とする。
【解決手段】本発明は、種結晶の結晶構造を基に半溶融状態の前駆体を結晶化して酸化物超電導バルク体とする方法であって、前駆体を包晶温度よりも低く、結晶化開始温度よりも低い温度域において、複数段のステップで徐々に温度降下させ、各ステップにおいては等温保持する予備的段階降温等温処理を施し、次いで、前駆体を包晶温度以上の温度に加熱し、結晶成長のための処理として複数段のステップで徐々に温度降下させ、各ステップにおいては等温保持する主体的段階降温等温処理を施して前駆体を結晶化することを特徴とする。 (もっと読む)


【課題】 (Bi,Pb)2223を含む臨海温度および臨界電流密度が高い超電導体および超電導線材を提供する。
【解決手段】 超電導相と非超電導相とから構成されているBi系超電導体であって、超電導相は(Bi,Pb)2223を含み、非超電導相におけるPb化合物の前記(Bi,Pb)2223に対するXRDによる回折ピーク強度の比較から得られる比率が6%以下であり、77K、0Tにおける臨界電流密度が310A/mm2より高いBi系超電導体。アニール工程における酸素分圧x(kPa)とアニール温度y(℃)は、図1の(1−1)〜(1−6)の線分で囲まれる領域(各式の線分を含む)内に存在する。 (もっと読む)


【課題】 Bを含むブロッキングユニットからなる、新規なPb系銅酸化物超伝導体とその製造方法を提供する。
【解決手段】 (Pb,M)ブロッキングユニット2のMサイトの全てが、B(3+)、BO3 3-、又はその両方で占有された(Pb,B)(1201)構造を有しており、組成比がPb0.5 0.5 となるようにPb原料の一部をB原料で置き換えて混合し、焼成することで(Pb,B)系銅酸化物高温超伝導体を作製する。(Pb,B)系銅酸化物高温超伝導体は、組成式:(Pb0.5 0.5 )(Sr0.5 La0.5 2 CuOz ,z=5+δ(但し、δは1未満の微少量)、又は組成式:(Pb0.5 0.5 )(Sr1-x Bax 2 (Y1-y Cay )Cu2 z ,0<x<1,0<y<1,z=7+δ(但し、δは1未満の微少量)、
で表される。 (もっと読む)


【課題】 本願発明は、Bi酸化物超電導体を用いて高性能な積層型ジョセフソン接合を得るために、結晶性の良いa軸(又はb軸)配向したBi系酸化物超電導薄膜を作製することを目的とする。
【解決手段】 結晶性の良いa軸配向したBi系酸化物超電導薄膜の作製方法は、初めに(110)面のLaSrAlO4の単結晶基板等を使い、基板上に低い成膜温度T1でa軸配向したBi-2223薄膜あるいはBi-2201薄膜をヘテロエピタキシャル成長させ、次にその成長した膜の上に高い成膜温度T2でホモエピタキシャル成長させる(二温度成長法)。通常、直接基板上に高い温度T2で成膜をするとc軸配向したBi-2223薄膜あるいはBi-2201薄膜が成長してしまうが、このように、あらかじめベースにa軸配向したBi-2223薄膜あるいはBi-2201薄膜を成長させておくことにより、基板温度を上げて成膜してもc軸配向膜ができることがなく、結晶性が良いa軸配向したBi-2223薄膜あるいはBi-2201薄膜が作製できる。 (もっと読む)


【課題】本発明は、小電流・小電力領域でも高性能で、大電流・大電力領域でも特性低下の小さい超電導バルク体を提供する。
【解決手段】超電導バルク体1において、該超電導バルク体1の少なくとも表面の一部の臨界電流密度が、該超電導バルク体内部の臨界電流密度よりも大きい表面超電導領域2が設けられていることを特徴とする超電導バルク体である。表面超電導領域2は、(a)のように、超電導バルク体1の一つの表面全面に形成しても良いし、また、(b)のように、超電導バルク体1の一つの表面の一部に形成しても良い。あるいは、(c)のように、超電導バルク体1の2つの表面形成しても良い。 (もっと読む)


1 - 18 / 18