説明

Fターム[5H018EE05]の内容

無消耗性電極 (49,684) | 電極の構成物質 (16,030) | 元素、単体 (8,152) | 炭素、カーボン (3,922)

Fターム[5H018EE05]の下位に属するFターム

Fターム[5H018EE05]に分類される特許

121 - 140 / 2,403


【課題】触媒層カーボンの酸化を抑制しつつ、犠牲酸化による強度低下等を抑制する。
【解決手段】MEA10と、ガス拡散シート12と、セパレータ20とを備える燃料電池セルにおいて、ガス拡散シート12の発電面内に、セパレータ20の水素含有ガス流路として機能する凹部22aの延在方向に略垂直となるように、触媒層カーボンよりも低結晶化度のカーボンを犠牲剤として添加する。冷媒流路24として機能する凸部24がリブとして機能し、犠牲酸化に伴う強度低下を補強する。 (もっと読む)


【課題】貴金属担持極細炭素繊維綿状体の製造方法。
【解決手段】以下(1)〜(6)の工程よりなる貴金属担持極細炭素繊維綿状体の製造方法。(1)熱可塑性樹脂と、レーヨン、ピッチ、ポリアクリロニトリル、等々から選ばれる少なくとも1種の熱可塑性炭素前駆体繊維を形成する。(2)溶剤により熱可塑性樹脂を溶解除去して熱可塑性炭素前駆体繊維とし、その分散液を作製する。(3)前記熱可塑性炭素前駆体繊維が分散した溶液を冷媒中に滴下させ、熱可塑性炭素前駆体繊維が分散した凍結体を作製する。(4)前記凍結体を凍結乾燥させることにより、熱可塑性炭素前駆体繊維から成る低密度構造体を形成させる。(5)前記低密度構造体を不融化処理した後、炭素化または黒鉛化し、極細炭素繊維綿状体を得る工程。(6)前記極細炭素繊維綿状体を、貴金属化合物溶液に浸漬させ、還元剤を添加することにより、極細炭素繊維綿状体の表面に貴金属を担持させる工程。 (もっと読む)


【課題】高い起電力及び十分な電流密度を得ることができる層状金属酸化物を含む電極を備える燃料電池を提供すること。
【解決手段】電極触媒と、第1の層状金属酸化物と、を含み、電極触媒100重量部に対して、第1の層状酸化物が50〜150重量部である、アノード電極と、カーボン材料と、第2の層状金属酸化物と、を含み、カーボン材料100重量部に対して、第2の層状酸化物が150〜250重量部である、カソード電極と、アノード電極とカソード電極との間に配置され、第3の層状金属酸化物を含む固体電解質層と、を備え、第1及び第3の層状金属酸化物は水蒸気処理が施されたものである、燃料電池。 (もっと読む)


【課題】燃料電池において、触媒層カーボンの酸化を抑制する。
【解決手段】MEA10、ガス拡散シート12、セパレータ20を備える燃料電池において、ガス拡散シート12内に、MEA10のアノード触媒層のカーボンよりも低結晶化度のカーボンを添加する。低結晶化度のカーボンの添加量は、ガス拡散シート12の厚さ方向に変化し、MEA10側をセパレータ20側よりも相対的に少なくして排水性を確保する。 (もっと読む)


【課題】金属や窒素を含有させないでも、従来の「カーボンアロイ触媒」と同程度の酸化還元活性を有する改質カーボンナノチューブを用いた、燃料電池の空気極触媒を提供する。
【解決手段】カーボンナノチューブからなる燃料電池用空気極触媒であって、該カーボンナノチューブは、側壁に側壁を貫通していてもよい細孔を有し、その細孔は0.1nm〜30nmの範囲の細孔径分布を有し、かつBET比表面積が100〜4,000m/gである、燃料電池用空気極触媒。 (もっと読む)


【課題】中心粒子に最外層が被覆された構造を有する触媒微粒子について、高い被覆率の触媒微粒子を効率よく得る製造方法、当該方法により得られる触媒微粒子、当該触媒微粒子を含む燃料電池用電極触媒を提供する。
【解決手段】中心粒子と、当該中心粒子を被覆する最外層を備える触媒微粒子の製造方法であって、前記中心粒子を準備する工程、常温未満の銅イオン溶液中、前記中心粒子に電位を印加することにより、前記中心粒子の表面に銅原子層を被覆する工程、及び、前記銅原子層を、前記最外層に置換する工程を有することを特徴とする、触媒微粒子の製造方法。 (もっと読む)


【課題】本発明は、高い合金化度および小さい微結晶サイズを有する担持された貴金属ベースの合金触媒の製造方法を提供する。
【解決手段】本方法は、反応媒体としてのポリオール溶媒の使用に基づいており、担体材料の存在下での二工程還元プロセスを含む。第一工程では、第一の金属(M1=遷移金属;例えば、Co、Cr、Ru)は、80℃〜160℃へと反応温度を上昇させることにより活性化される。第二工程において、第二の金属(M2=貴金属;例えば、Pt、Pd、Auおよびそれらの混合物)が加えられ、そして、スラリーは、160℃から300℃までの範囲内でポリオール溶媒の沸点まで加熱される。この二工程法により均一還元が起こり、その結果、高い合金化度および3nm未満の小さい微結晶サイズを有する貴金属ベースの触媒になる。高合金化度により格子定数は、低くなる。 (もっと読む)


【課題】白金等の触媒金属を使用せずに水素の酸化還元及び酸素の貴電位における還元を行うことができる炭素を基体とする電極材料の製造方法、炭素を基体とする電極材料並びにこれを使用した燃料電池及び二次電池を提供する。
【解決手段】カルバミン酸を含む水溶液を電解酸化することにより、電極として使用した炭素材料の表面の炭素原子に含窒素官能基を共有結合させ、表面に含窒素官能基を共有結合させた炭素材料を強酸中で電解還元処理することにより、白金等の触媒金属を使用せずに水素の酸化還元及び酸素の貴電位における還元を行うことができる炭素を基体とする電極材料を製造する。 (もっと読む)


【課題】IPガス透過性で評価される高いガス透過性と断面加圧抵抗値で評価される高い導電性とを同時に備える固体高分子形燃料電池のガス拡散層を提供する。
【解決手段】加熱により相互に熱融着させられた熱融着性有機繊維OFにより構成される多孔質骨材構造30を有し、その多孔質骨材構造30内において、炭素繊維CFが導電性微粒子と共に結合剤樹脂Rによって相互に結着されて成ることから、比較的少ない熱融着性有機繊維OFの相互融着によって比較的高い剛性を有する多孔質骨材構造30がガス拡散層18(20)内に形成されるので、高いガス透過性および加圧時の導電性とが同時に具備するガス拡散層18(20)が得られる。 (もっと読む)


【課題】本発明は、燃料電池用触媒層を形成するためのインクであって、安価で高性能の燃料電池用触媒層を効率的に形成可能なインクを提供すること。
【解決手段】本発明のインクは燃料電池用触媒層を形成するためのインクであって、燃料電池用触媒、電子伝導性材料、プロトン伝導性材料および溶媒を含み、前記燃料電池用触媒がニオブおよび/またはチタンを含む金属含有炭窒酸化物からなり、前記燃料電池用触媒の含有量Aと前記電子伝導性材料の含有量Bとの質量比(A/B)が、1以上6以下であり、前記燃料電池用触媒および前記電子伝導性材料との合計含有量Cと、プロトン伝導性材料の含有量Dとの質量比(D/C)が、0.2以上0.6以下であることを特徴とする。 (もっと読む)


【課題】活性粒子含有触媒、その製造方法、該触媒を含んだ燃料電池、該活性粒子を含有するリチウム空気電池用電極、及び該電極を含んだリチウム空気電池を提供する。
【解決手段】第1金属酸化物を含むコアと、第1金属酸化物の還元生成物と第2金属との合金を含むシェルと、を含有する活性粒子を有する触媒、その製造方法及びこれを含んだ燃料電池を提供する。前記活性粒子は、シェル上部に、第2金属を含む第2金属層をさらに含有することを特徴とし、前記第1金属は、3ないし8族金属、10ないし14族金属及び16族金属のうちから選択された一つ以上であることを特徴とする。 (もっと読む)


【課題】本発明は、燃料電池のシステム効率を低下させることなく、長期にわたりギ酸の排出量が少ない燃料電池用膜/電極接合体を提供することを目的とする。
【解決手段】固体高分子電解質膜と、固体高分子電解質膜の一方の面上に設けられた触媒と固体高分子電解質を含むアノードと、固体高分子電解質膜の他方の面上に設けられた触媒と固体高分子電解質を含むカソードと、アノードの前記固体高分子電解質膜と反対側の面上に配置されたアノード拡散層と、カソードの前記固体高分子電解質膜と反対側の面上に配置されたカソード拡散層と、を備える燃料電池用膜/電極接合体において、アノード拡散層とアノードの間に、パラジウムと固体高分子電解質を含むギ酸酸化電極を形成する。 (もっと読む)


【課題】 Ptを含む貴金属触媒成分と、触媒担持カーボンと、高分子電解質とを含む触媒層を、高セル特性を示す範囲に適合するように調製することにより、高性能の固体高分子電解質型燃料電池を実現する。
【解決手段】 水素イオン伝導性を有する固体高分子を電解質とした固体高分子電解質膜102と、固体高分子電解質膜102を相互で挟持するように配置された燃料極103及び酸化剤極104と、燃料極103及び酸化剤極104の固体高分子電解質膜102に対向する面にそれぞれ配置され、Ptを含む貴金属触媒担持カーボン粒子及び高分子電解質を含んで形成された触媒層109,110と、を具備した固体高分子電解質膜型燃料電池であって、触媒層109,110の組成は、該触媒層に含まれるPt重量当りの水蒸気吸着量が200〜500[m/gPt]の範囲となるように調整されている。 (もっと読む)


【課題】耐久性に優れた触媒として用いることが可能なポリマーコンポジット変性物を提供することを目的とする。
【解決手段】下記条件(1)及び(2)を満たす高分子と、分子量が300以上の金属錯体、およびカーボン、を含む混合物に、加熱処理、放射線照射処理又は放電処理の何れかの変性処理を行うことにより得られる。
(1)窒素含有率が1質量%以上
(2)不活性ガス雰囲気下で300℃から500℃まで昇温した際の質量減少率が50%以内 (もっと読む)


【課題】CNTの一端を電解質膜に、他端をGDLに夫々接続する燃料電池において、触媒層とGDLとの間の電子伝導性の低下を抑制可能な燃料電池の製造方法を提供する。
【解決手段】MEAを構成するCNT触媒層は、垂直配向CNT12と、その表面を被覆するアイオノマ16とを備える。先ず、このMEAの側面に予熱した治具18を配置し、これらの間に所定圧力を印加する。続いて、印加圧力を開放してMEAから治具18を取り外す。これにより、治具18の熱で軟化したアイオノマ16を治具18に付着させて除去できる。その後、CNT触媒層とGDLとを接合すれば、垂直配向CNT12の露出先端とGDLとを直接、点接触させることができる。 (もっと読む)


【課題】 高い活性を示す燃料電池用担持触媒及び燃料電池を提供する。
【解決手段】 本発明に係る燃料電池用担持触媒は、直径が10nm以下の細孔の容積が0.03乃至0.15cm/gの範囲内にあるカーボン担体と、前記カーボン担体に担持された触媒粒子とを備えている。また、この燃料電池用担持触媒は、比表面積当りの酸性官能基量が0.4μmol/m以上である。 (もっと読む)


【課題】三相界面の面積が大きく触媒粒子表面利用率が高い、燃料電池用電極の製造方法を提供する。
【解決手段】燃料電池用電極の製造方法は、電解質前駆体溶液を調製する工程と、炭素粒子からなる多孔体S11と触媒粒子で構成される触媒多孔構造体に電解質前駆体を塗布する工程S12と、触媒多孔構造体に塗布された電解質前駆体を重合することで上記多孔構造体中において電解質層を形成する工程S13と、を有する。高分子電解質が導入できない細孔構造中の触媒粒子近傍まで、低分子状態の電解質前駆体は隈無く配置され、その後重縮合反応を経由した電解質前駆体の高分子量化が進行し、プロトン輸送パスとなる電解質層を触媒粒子近傍まで高密度高分散形成することができるので、三相界面の面積が大きくなり、触媒粒子表面利用率が高くなる。 (もっと読む)


【課題】金属微粒子をカーボン材料に担持させた金属微粒子担持体およびその簡便な製造方法を提供する。
【解決手段】カーボン材料を含有する一方、金属微粒子の凝集を抑制する分散溶解剤を含有しない溶液5中に、1対の放電電極1・1を配置する。グロー放電により放電電極1・1間にプラズマを発生させることによって、放電電極1・1を融解して金属微粒子を形成すると共に、形成された金属微粒子をカーボン材料に担持させて金属微粒子担持体を形成する。 (もっと読む)


【課題】 接合体の燃料極或いは酸化剤極の外周部でかつ反応ガス入口部における固体高分子電解質膜内の水分を保持して湿潤性を高く維持することができ、固体高分子電解質膜の劣化を抑制する。
【解決手段】 水素イオン伝導性を有する固体高分子を電解質に用いた固体高分子電解質型燃料電池であって、固体高分子電解質膜3と、膜3の一方の面に配置された燃料極4と、膜3の他方の面に配置された酸化剤極5と、燃料極4の膜3とは反対側の面に配置された燃料極側セパレータ12と、酸化剤極5の膜3とは反対側の面に配置された酸化剤極側セパレータ13とを有している。さらに、燃料極4の外周端部で且つ燃料極側セパレータ12のガス流路の少なくともガス入口部に相当する部分を被覆するように、導電性材料と親水性の官能基を有する高分子樹脂とを含む被覆層25が形成されている。 (もっと読む)


【課題】リチウム空気電池を提供する。
【解決手段】リチウムを含む負極と、酸素を正極活物質として使用する正極と、有機系電解質と、を含み、該有機系電解質が、金属−リガンド錯体を含むリチウム空気電池である。前記金属−リガンド錯体は、正極とリチウム酸化物との間の電子移動を媒介する。また、前記金属−リガンド錯体の酸化還元電位は、リチウム金属に対して2ないし5Vである。前記金属は、元素周期律表の第3族ないし第15族からなる群から選択された一つ以上を含み、更に遷移金属を含む。前記リガンドは、二重結合または三重結合を含み、更に共役構造を含む。 (もっと読む)


121 - 140 / 2,403