説明

Fターム[5H018EE10]の内容

無消耗性電極 (49,684) | 電極の構成物質 (16,030) | 合金、金属間化合物 (987)

Fターム[5H018EE10]に分類される特許

61 - 80 / 987


【課題】燃料電池の触媒層のプロトン伝導性を向上させる。
【解決手段】燃料電池の触媒層の製造方法は、(a)基材シートと、触媒を含む触媒基材であって基材シート上に配置された触媒基材と、を有する一次転写用シートにおける触媒基材の空隙率を低減させて、触媒層転写シートを生成する工程と、(b)燃料電池用の電解質膜に、触媒層転写シート上の触媒基材を転写する工程と、を備える。 (もっと読む)


【課題】 電気化学反応を用いることでランニングコストを抑えながら、小型の装置で、大きな処理能力を得ることができる、ガス分解素子、なかでもとくにアンモニアを提供することを目的とする。
【解決手段】 このガス分解素子は、内面側のアノード2と、外面側のカソード5と、該アノード、カソードによって挟まれる固体電解質1とで構成される、筒状MEA7と、筒状MEAの内面側に装入され、第1電極に接する多孔質金属体11sと、多孔質金属体11sの導電性軸をなすように挿通された中心導電棒11kとを備えることを特徴とする。 (もっと読む)


【課題】触媒金属の粒子径の経時的増大を抑制して、発電特性の向上を図ることができる固体高分子型燃料電池用膜−電極構造体を提供する。
【解決手段】固体高分子型燃料電池用膜−電極構造体は、固体高分子電解質膜1を、触媒粒子23を含む1対の電極触媒層2,2で挟持してなる。触媒粒子23は、粒子状プロトン電解質ポリマー21に触媒金属22が担持されてなる。粒子状プロトン電解質ポリマーは21は100nm以下の平均粒子径を備える。または、粒子状プロトン電解質ポリマーは21は0〜0.7meq/gのイオン交換容量を備える。 (もっと読む)


【課題】 燃料電池用触媒層−電解質膜積層体を簡便に作製することを可能とした、触媒層−電解質膜積層体の製造方法およびそれを用いた固体高分子形燃料電池を提供する。
【解決手段】 本発明は、イオン伝導性高分子電解質膜2と、イオン伝導性高分子電解質膜2の両面にそれぞれ形成された触媒層3とを含む触媒層−電解質膜積層体1の製造方法であって、金属コロイド溶液を用いて触媒層を形成する工程を含み、上記金属コロイド溶液は、担体レスの金属ナノ粒子と、界面活性剤と、溶媒とを含む。また、本発明の固体高分子形燃料電池20は、本発明の触媒層−電解質膜積層体の製造方法により得られる触媒層−電解質膜積層体1を用いる。 (もっと読む)


【課題】放電の際に正極上に金属炭酸塩が生成されることを防止する。
【解決手段】金属空気電池1は、正極2、負極3、電解質層4および空気導入管5を備える二次電池である。正極2は、略有底円筒状の多孔質部材であり、アルミナにより形成される正極支持部21、導電性を有するペロブスカイト型酸化物により形成される正極導電層22、および、二酸化マンガンにより形成される正極触媒層23を備える。負極3は、ステンレス鋼により形成された負極支持部31、および、リチウムまたはリチウム合金により形成される負極導電層32を備える。金属空気電池1では、ペロブスカイト型酸化物にて形成された正極導電層22上に正極触媒層23を形成することにより、炭素を含有しない正極2を実現することができる。これにより、放電の際に正極2上に炭酸リチウムが生成されることを防止することができ、金属空気電池1の充電電圧を低くすることができる。 (もっと読む)


【課題】 触媒利用率を向上させた、触媒層−電解質膜積層体およびそれを用いた固体高分子形燃料電池を提供する。
【解決手段】 本発明は、イオン伝導性高分子電解質膜2と、イオン伝導性高分子電解質膜2の両面にそれぞれ形成された触媒層3とを含む触媒層−電解質膜積層体1であって、触媒層3は、担体レスの金属ナノ粒子を含み、触媒層3における担体レスの金属ナノ粒子の二次粒径分布は、D90が1.5μm以下且つD50が0.5〜1.3μmである。また、本発明の固体高分子形燃料電池20は、本発明の触媒層−電解質膜積層体1を用いる。 (もっと読む)


【課題】高容量で耐久性に優れたキャパシタを提供することを課題とする。
【解決手段】ニッケルを50〜80重量%、タングステンを20〜50重量%含有し、必要により10重量%以下のリンおよび/または10重量%以下のホウ素含む金属多孔体である。この金属多孔体は、導電処理をした発泡ウレタン等の多孔体基材にニッケルとタングステンとを含む合金皮膜を形成し、次いで多孔体基材を除去した後に、金属を還元するか、導電処理をした多孔体基材にニッケルとタングステンとを含む合金皮膜を形成し、次いで多孔体基材を除去した後に、金属を還元する等の方法により得ることができる。 (もっと読む)


【課題】電解質層の焼成時に金属基材の異常酸化を抑制しつつ、電解質層のひび、剥がれ等を抑制する燃料電池の製造方法を提供する。
【解決手段】ガス透過性を有する金属基材10に焼成処理によって電解質層30を形成する燃料電池の製造方法であって、電解質層30は固体酸化物電解質31と、焼成処理における焼成温度以下の融点又はガラス転移点を有する補助材料32とを含み、焼成処理の際に、補助材料32の金属基材10への移動を抑制する移動抑制処理を施すものである。 (もっと読む)


【課題】燃料の酸化還元反応の進行に伴って生じる燃料溶液内の燃料濃度勾配やpH勾配、電極付近の温度変化による電池出力の低下を自動的に回復する機構を備えたバイオ燃料電池の提供。
【解決手段】電極1表面及び/又は電極1内部に、接触する燃料溶液3の特性変化に応答して可逆的に膨潤収縮する高分子ゲル2を有するバイオ燃料電池Aを提供する。バイオ燃料電池Aでは、高分子ゲル2が、接触する燃料溶液3の特性変化に応答して膨潤収縮することにより、燃料溶液3あるいは溶液中の物質の拡散性を高めたり、燃料溶液3を攪拌したりすることができる。 (もっと読む)


【課題】カーボン担持コアシェル型触媒微粒子の製造方法、当該製造方法により得られるコアシェル型触媒微粒子を用いた触媒インクの製造方法、及び、当該製造方法により得られる触媒インクを含む触媒層を提供する。
【解決手段】コア部と、当該コア部を被覆するシェル部を備える、カーボン担持コアシェル型触媒微粒子の製造方法であって、カーボン担体に担持されたコア微粒子を準備する工程、前記コア微粒子と、不活性化剤とを混合することにより、前記カーボン担体の表面に存在する官能基を不活性化させる不活性化工程、及び、前記不活性化工程の後に、前記コア微粒子をコア部として、当該コア部に前記シェル部を被覆する工程を有することを特徴とする、カーボン担持コアシェル型触媒微粒子の製造方法。 (もっと読む)


【課題】本発明は、燃料電池の製造方法に関し、垂直方向に形成させたカーボンナノチューブを高分子電解質膜に良好に転写できる燃料電池の製造方法を提供することを目的とする。
【解決手段】本実施の形態の製造方法は、(1)種触媒層形成工程、(2)カーボンナノチューブ成長工程、(3)触媒担持工程、(4)アイオノマ塗布工程、(5)転写工程を備えている。(5)転写工程では、先ず、カーボンナノチューブに高分子電解質膜を軟化点温度以上の温度で密着させて接合させる(ステップ112)。これにより、基板−カーボンナノチューブ層−電解質膜接合体が作製できる。続いて、上記接合体をアルカリ溶液中に浸す(ステップ114)。これにより、基板上に形成されたゼオライト層又は種触媒を溶解除去する。或いは、ゼオライト層を種触媒と共に溶解除去する。 (もっと読む)


【課題】本発明は、燃料電池用電極およびその製造方法に関し、カーボンの一次凝集体に形成される細孔に、酸素を良好に到達させることが可能な燃料電池用電極およびその製造方法を提供することを目的とする。
【解決手段】本実施形態のカソード電極は、ミセル径の異なる2種類のアイオノマーを用いる。カーボンの一次凝集体140間に形成される空洞148の入口径よりも小さいミセル径のアイオノマー(アイオノマー146A)と、それよりも大きいミセル径のアイオノマー(アイオノマー146B)を用いる。これにより、空洞148の内壁や、一次凝集体140の外表面をアイオノマー146A,146Bで万遍なく被覆することができる。アイオノマー146Aには、アイオノマー146Bよりも高い酸素透過性の高分子材料を用いる。これにより、空洞148内における酸素透過性を確保できる。 (もっと読む)


【課題】高い起電力を有しながら、析出物の析出を抑制できるレドックスフロー電池を提供する。
【解決手段】レドックスフロー電池100は、正極電極104と、負極電極105と、両電極104,105間に介在される隔膜101とを具える電池セルに正極電解液及び負極電解液を供給して充放電を行う。正極電解液は、マンガンイオンを含有する。負極電解液は、チタンイオン、バナジウムイオン、クロムイオン、亜鉛イオン、及びスズイオンから選択される少なくとも一種の金属イオンを含有する。このレドックスフロー電池100は、正極電解液の充電深度が90%以下となるように運転されることで、MnO2といった析出物の析出を抑制し、良好に充放電を行える。また、このレドックスフロー電池100は、従来のバナジウム系レドックスフロー電池と同等、又は同等以上の高い起電力を有する。 (もっと読む)


【課題】優れた発電特性および耐久性を有する燃料電池を提供する。
【解決手段】アノードと、カソードと、前記アノードと前記カソードとの間に配置された電解質膜とを含み、前記アノードは、前記電解質膜上に積層されたアノード触媒層、および前記アノード触媒層上に積層されたアノード拡散層を含み、前記アノード触媒層は、アノード触媒および高分子電解質を含み、かつ高分子電解質の含有率が異なる少なくとも上層部および下層部から構成され、前記上層部は、アノード拡散層側に位置し、前記下層部は、電解質膜側に位置し、前記下層部における前記高分子電解質の含有率が、前記上層部における高分子電解質の含有率よりも低く、さらに、前記アノード触媒層は、複数の貫通孔を有し、前記貫通孔の細孔径の最も小さい部分が、前記下層部に存在する、燃料電池用膜電極接合体、ならびにそれを用いる燃料電池。 (もっと読む)


【課題】十分なプロトン伝導性とガス拡散性を確保し、反応活性点を増加させ出力性能を向上させた燃料電池用電極触媒層、この電極触媒層を備えた燃料電池用膜電極接合体、この膜電極接合体を備えた燃料電池および燃料電池用電極触媒層の製造方法を提供する。
【解決手段】燃料電池用電極触媒層21は、少なくとも表面に触媒物質1を備え、触媒物質1の表面が高分子電解質層3によって被覆されている複数の複合触媒粒子11と、高分子電解質が凝集することによって形成された複数の凝集体12とで構成される。複数の複合触媒粒子11を複数の凝集体12で連結するとともに、複数の凝集体12が、高分子電解質を溶かしてなる溶液を乾燥して形成される。 (もっと読む)


【課題】 乾燥工程や還元処理工程などが不要で工程が少なく、燃料電池用電極材料を安価に生産性良く製造する方法を提供する。
【解決手段】 炭素質基材と触媒金属の前駆体と合金成分と還元剤成分とを、超臨界または亜臨界流体中に共存させて処理することにより、前記炭素質基材に触媒金属を形成することを特徴とする燃料電池用電極材料の製造方法。 (もっと読む)


【課題】 燃料がアンモニアで、燃料室側触媒電極層に使用される電極触媒が貴金属触媒である固体高分子型燃料電池では、発電を継続すると、上記貴金属触媒の活性が低下し発電能が低下していく問題があり、これを改善して、長時間発電可能な燃料電池とすること。
【解決手段】 アンモニア60〜99体積%及び水素40〜1体積%を含む混合ガスを、上記燃料室側触媒電極層に使用される電極触媒が貴金属触媒である固体高分子型燃料電池の燃料として用いることによって、燃料電池の性能低下を効果的に防止し、長時間発電可能な燃料電池とする。 (もっと読む)


【課題】多孔体基板上へのより高品位で緻密な薄膜形成を可能とすることで、発電特性に優れる中温型燃料電池の製造方法を提供する。
【解決手段】金属粉末焼結多孔体基板6を研磨加工した面上にCVD法および/またはPVD法にて酸化物薄膜8を成膜した後、その上に液相法により成膜9を行うことを特徴とする金属粉末焼結多孔体基板への薄膜製造方法。上記の液相法がMOD法、またはゾルゲル法であることを特徴とする金属粉末焼結多孔体基板への薄膜製造方法。 (もっと読む)


【課題】燃料電池の電気化学エネルギーデバイスの一時的な高出力運転時の不安定動作を改善することを課題とする。
【解決手段】水素酸化反応を促進する触媒を担持した電気伝導体と、高水素分圧下で水素を吸蔵し、かつ、低水素分圧下では水素を放出する性能を持つ平均粒径400nm以下の金属水素化物と、を含む触媒層を有する触媒電極、この触媒電極を燃料極10として用いる燃料電池1、および、燃料電池1を動力源として用いる機器を提供する。 (もっと読む)


【課題】触媒利用率および発電効率の向上が高い膜電極接合体を提供する。
【解決手段】実施の形態に係る膜電極接合体50は、固体高分子電解質膜20と、固体高分子電解質膜20の一方の面に設けられたアノード触媒層26、固体高分子電解質膜20の他方の面に設けられたカソード触媒層30とを備える。アノード触媒層26は、固体高分子電解質膜20に接するアノード触媒層26aとアノードガス拡散層28に接するアノード触媒層26bの2層からなる。また、カソード触媒層30は、固体高分子電解質膜20に接するカソード触媒層30aとカソードガス拡散層32に接するカソード触媒層30bの2層からなる。アノード触媒層26aおよびカソード触媒層30aの触媒密度は、0.3g/cm以上1.5g/cm以下であり、アノード触媒層26bおよびカソード触媒層30bの触媒密度は、0.1g/cm以上1.0g/cm以下である。 (もっと読む)


61 - 80 / 987